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ABSTRACT

The objectives of thls work are to:

0 Derive the governing equations for linear dynamics of a
compliant riser idealized as a slender non-rotationally uniform

rod with bending, extensional and torsional degrees of freedom,

] Analyze a novel combination of efficient embedding and
asymptotic techniques used to solve the three dimensional linear
dynamic problem of a compliant riser with a planar static

configuration.

o] Present numerical examples for the linear dynamic analysis of a

buoyant compliant riser in the presence and absence of external

current.
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CHAPTER I

INTRODUCTION AND OQUTLINE

Compliant risers are assemblages of pipes with very small overall
bending rigidity used to convey oil from the ocean floor or a subsurface
- buoy to a surface platform. A compliant riser is permitted to acquire
large static deformatiouns because of its small bending rigidity and
readjusts its conflguration in response to large slow motions of the
supporting platforms, to which it is rigldly comnected, without excessive
stressing. Compliant risers have been used successfully in protected
waters in buoy loading stations for tankers. Extensions of shallow water
concepts to deeper waters have been proposed by the industry [1] to [8]'
as alternatives to conventional production risers, because they simplify
the overall production system.

Unlike mooring lines, compliant risers usually exhibit relatively
small stiffness even in moderate water depth applications., This usually
brings their first few natural frequencies within the frequencies of the
wave spectrum and the frequencies due to vortex effects. Therefore
dynamic effects need to be taken into account in the design process for
the calculation of maxima and fatigue characteristics of the system.

This work deals with solutions of the linear dynamic problem of compliant
risers which are useful in preliminary design and can be used to

construct efficient numerical solutions of the nonlinear dynamic
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problem. The present work is based on Patrikalakis and Chryssostomidis
[9] for a general nonlinear mathematical model for compliant risers; on
Chryssostomidis and Patrikalakis [10] for an efficient solution of the
planar nonlinear static problem of a compliant riser in a curreant; and,
on Patrikalakis and Chryssostomidis [1l] for an efficient solution of the
general nonlinear static problem.

Chapter II provides a general formulation of the linear three
dimensional dynamic problem around three dimensiomal and planar nonlinear
static configurations of a compliant riser,

Chapter III provides solutions of the out-of-plane linear
eigenproblem for a planar static conflguration with examples for a
buoyant compliant riser.

Chapter IV provides solutions of the in-plane linear eigenproblem for
a planar static configuration with examples for a buoyant compliant riser.

Chapter V provides a complete formulation of the three dimensional
eigenproblem for a three dimensional nonlinear static configuration with
torsiou.

Chapter VI summarizes the conclusions of the present work and

outlines a method for using the eigensolutions to comstruct an efficient

solution of the nonlinear problem.
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CHAPTER II

PROBLEM FORMULATION

II. 1 INTRODUCTION AND MODEL ASSUMPTIONS

A mathematical model for the static behavior of slender elastic rods
undergoing large deformations with small strains is given in Love [12]
and landau and Lifshitz [13]. The modification to account for dynamic
effects and the presence of heavy fluild inside and outgside a tube
nodelled as a slender rod can be found in Nordgren [14] and Patrikalakis
[15]. Methods for the computation of the motion of elastic rods with
equal principal stiffness and with torque applied at the ends can be
found in Nordgrem [14] and [16] and without torque in Garrett [17].

Patrikalakis and Chryssostomidis [9] extended the mathematical model
derived in [14] and [15] to allow computation of the motion of an
assemblage of tubes modelled as a non-rotationaly wniform slender elastic
rod with space varying torque. The model described in [9] also accounts
for the effects of steady intermal flow in the nonlinear regime. A
related model allowing study of the effects of steady internal flow on
the linear dynamics of planar nmaturally curved tubes can be found in Hill
and Davis [18]. Patrikalakis and Chryssostomidis [10] and {11] used
their mathematical model [9] to calculate two and three dimensional
nonlinear static solutions of buoyant compliant risers in the presence
and absence of current. Gursoy [19] extended the static solutioms {10]

and [11] to the case of heavy compliant risers in a catenary
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configuration.

In this work we use the mathematical model derived in [9] to derive a
set of structurally linearized dynamic equations around a general static
configuration which is assumed to be known [10, 11 and 19]. For reasons
of completeness we summarize the assumptioms of the mathematical model we
uge [9]:

1. The compliant riser is modelled as a single non—-rotationally uniform
rod rather than as an assemblage of interacting rods or shells. We
make this idealization in order to reduce the degrees of freedom and
allow analysis of the global behavior of cur system with the
currently available information on the structural characteristics of
guch structures. It is noted that for some compliant risers [6], the
equations of the individual members composing the riser and the
interactions between tubes need to be énalyzed. Certain phenomena,
such as whirling instabilities of linear riser arrays [20],
necessitate this level of more detailed anaiysis.

2. The materials employed in the construction of different layers of
compliant risers are assumed to be homogeneous, isotropic and
linearly elastic.

3. Strains are assumed to remain uniformly small, although deformations
may become large.

4. Shearing deformations are neglected [9] to [19]. This assumption 1s
realistic for low order flexural modes (n << L/D) and implies that
plane cross sections remain plane after bending and normal to the
neutral axis as in the Rayleigh slender beam theory, Crandall, et alﬂ
[21].

5. Thermsl effects are neglected.
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Assumption 1 implies strain continuity across layers cf different
materials in a given assemblage of tubes. This idealization together
with assumptions 2 to 5 allows the computation of equivalent bending,
extensional and torsional rigidities of a cross section. Two values of
the bending rigidity, EIEE and EI"  are required, where £ and N are
the centroidal principal axes of the cross section around which the
bending rigidity is maximum and minimum respectively. The term centroid,
C, of a cross section denotes the moment centroid of the cross section
with weighing factor the Young's modulus of the materials participating
in bending, Crandall, et al. [22].

In this work, we make the following additional assumptions:

6. The centroid, C, defined above is also the mass centrold of the cross
section.
7. The axes £ , £ and n are principal axes of the mass inertia of the

cross sectiom, where I 1s orthogonal to ¢ and n at C.

Further theoretical and experimental research will be necessary to
quantify the errors implied by the above assumptions, particularly
assumptions 1 to 5.

II. 2 GENERAL THREE DIMENSIONAL GOVERNING LINEAR DYNAMIC EQUATIONS

In order to present the governing equations of the riser, we define
an orthogonal right-handed inertial Cartesian axes system, 02??, and a
body system, CEEH , defined at each cross section of the rod. In the
Cartesian axzes system I is horizontal and points in the direction of the
predominant current and 3 is vertical and positive upwards. The body
system, ngﬁ, is an orthogonal right—handed Cartesian axes system

-~
where C 1is the tangential unit vector to the centerline and it points
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in the direction of increasing arc length, and % and ﬁ are unit
vectors along the principal axes of the cross section éround which the
bending rigidity is maximum and minimum respectively. The centerline is
defined to be the line that joins all points C in the different cross

" sections of the rod. The system CEE; is the principal torsion-flexure

system of axes of the rod [12].

The general nonlinear dynamic equations of equilibrium of forces and
moments acting on a differential element of a compliant riser with

centroid C derived ir [9] can be written as:

> _ > - -+ - -+ (l)

Fs Wi + fﬁ + K ma + ZcoiAim Xz

— + -> - -

M tCx +MH+@=dH /dt (2)
where subscript s denotes partial derivative with respect to the
unstretched arc length s,

o rerP qf 5155 o pr™M oy . " (3

M, = 61, Q@°, EI2° @7, EI]' Q) + U

Glg = crP - ¢? J.CC, E1°° = £1o6 - (%3 86 )

i e i’

e 1



18

and

quk _rae =3%Fel+ M - 158y oF W+

C[Jicg(zﬁﬁ et - aqy + (@1 - 17 @ + Q%M

The g and ﬁ components of dEC,e/dt can be obtained by cyelic
permutation of Z,£ and n .

The general nonlinear static equations of equilibrium of forces and
moments of a compliant riser can be obtained from (1) and (2) by setting
all velocities and angular velocities equal to zero and replacing the

-
external loads FH and ﬁ&l with their mean values:

- - -

FQS - Wj + FHO = O (6)
- > - - _
Meos T Co X F o+ My, =0 (7)

where subscript o denotes static quantity.

Purely dynamic equations of equilibrium can be obtained by
subtracting (6) from (1) and (7) from (2). The resulting dynamic
equations can be subsequently linearized for small motions and angles
around the static configuration. In order to derive these equations, we
start by determining the direction cosines Bij of U" = [ E, f, ﬁ]Twith

respect to U“o = [ Eosgﬁ, ﬁO]Tfor small dynamic angles ¢1,61and ¢1
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around the static configuration. Following [9], [1l}], if

U= T,E,E ]T then

and since Cg = C;] , Crandall et al [21], we obtain

T . o

U"=C'C
o o

By expanding C as,
C= C, + C
where subscript 1 denotes small dynamic quantities, we obtain
gm =3 - "
o

where

B=1I+E

(8a)

(8b)

(9)

(10)

(11)

(12)

I is a unit matrix and E = (Eij) is an infinitesimal rotation matrix,
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Goldstein [23], defined by

T
E=(C - ¢
17 G (13)

In order to determine B in terms of the Euler angles, we use the

expansions
$ =+, 8=08 0, V= b+ (14)

where ¢],eT and Y, are assumed to be small.

Therefore, the elements of CI = (C}j) are to within first order

in ¢1,e1 and w1:

)y = - cos ¢o sin So 81 - cos 60 sin ¢ & ‘ (15.1)
1 .
clp = - sin 60 sin ¢o el + cos 90 cos ¢o ¢l {15.2)
cis = - CoS5 60 81
(15.3)
cl = cos 0 si i
21 s 0 sin wo cos ¢0 Bl + sin 60 cos ¢O cos ¢o wl (15.4)

- sin 60 sin wo sin ¢0 ¢l + gin wo sin ¢o wl -

- ¢os ¢0 cos ¢0 ¢l-
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1. o ea : ; :
oy cos 90 sin' y_ sin ¢D 81 + sin 80 cos wo sin ¢0 ¢l
+ sin 80 sin wo cos ¢o ¢l - sin wo cos ¢O wl {(15.5)
- cos Y _ sin ¢° ¢1
1 .
Cyq = — sin 80 sin wo 61 + cos BO sin wo wl (15.6)
cél = coS8 eo cos wo cos ¢o el - sin 90 sin ¢o cos ¢0 wl
- sin 80 cos wo sin ¢0 ¢l + cos wo sin ¢ wl (15.7)
+ sin wo cos ¢0 ¢l
1 _
cy, = cOS 80 Cos ¢0 sin ¢0 8l sin 60 gin po sin ¢0 wl (15.8)
+ sin 60 cos wo cos ¢o ¢l - cos wo cos ¢0 wl + sin ¢0 sin ¢0 ¢l
el = - sinB cosy 8 - 6 si (15.9)
33 o o8 o 1 cos 0o sin Ipo wl '
Therefore [9], relations (13) and (15) and the properties of the
transformation matrix B, see [21], [23] give:
€., = =€
ij ji (16)

f117 22 7 337 O (17)
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Boy = €1 12

= - (18)
B3y = €31 = ~B13
Byp ™ €35 = ~F53

i.e. E= (Eij) is a skew-symmetric (or anti~-symmetric) matrix. Also the

game relations glve after some algebra:

19
312 = 312 = ¢l cos eO cos wo - el gin ¢O (19)
By3 = €13=-9 cos O, sin Y, ~ 8, cos ¥, (20)
Byg ™ Ep3 = ¥ = &) sin &

(21)

These relations can be also obtained with very little algebra by

noticing that the infinitesimal dynamic rotation angle 5$1 can be

expressed as

- - »> -

83, = ¢ k+6, &, + U T (22)

where

£y, = [-sin 9 , cos ¢, 0] * U (23
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and therefore

™y

68 = [-8) stn 9y, &) cos 4, 4,1 U+, - (24)

- - > -
and then using U=CZ . U0 to determine the components of 0% on 55, and, N,

i.e.

.

= z £ n .o
5¢l [5@1 0, 5@1 0, 5@1 0] U0 (25)

However, following [21] or f23]

- _ &3 B = 50.°
= 6@1 o, £ 6@1 o (26)

- n

€12 €13

and equations (19) to (21) are easily obtained. This last method of
-
derivation has been used to evaluate the components of & in terms of the

Euler angles [9].

Relations (12) and (18) to (21) provide

and all other Bijin terms of ¢0, 80, wo’ ¢1, 81 and ¢1'

Next we linearize the compatibility relations [9] and we obtain:

+ - Vv = .
v 22 v £ T. /EA (28)
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n

Gl yE e re) @ (29)

' vz + QE VE - Qg v© - -(1+ eo) mg (30)

where the expansions

e-eo'l'el,T"To‘f'Tl, QC=QS;+Q_IC, QE=Q§+QE,

nz= N n

Q Sl + M and e, = Tl/EA

have been used and all dynamic quantities were assumed to be small.

Next, we linearize the relatioms of 3 with the Euler angles and

their space derivatives [9]:

oF

] = wls,— ¢Is sin So - ¢°5 cos 80 81 (31)
Qg = - 603 sin wo wl + Bls cos $o + ¢ls cos eo sin wo +
(32)
¢os (cos 90 cos wo wl - sin 60 sin wo 81)
n _ -
gl - - Bos-cos wo wl sin wo 615 + ¢1s cos 90 cos wo
(33)

- b5 (cos 8 sin v, Py + sin B cos b, 91)

Subsequently, we linearize the relations between the components of ;,

- -
v, and w 1
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z r £ _ & n n

a’=vl,a’ =vi,a =v

the relations between & and the Euler angles:

4
w* = -
wlt ¢lt sin 80

£ - .
& elt cos wo + ¢lt cos So sin wo

W =-8__ sin 1})0 + ¢lt cos 80 cos I,UO

1t

and the relations between 5 and o

Q° =t + W - Qb
1t s o o}

E oL
Qlt ws

U PRSP
o] [}

n _. n g & & .
Qlt ms + Qo w’> - Qo w

Similarly by setting

x= xo + xl, y = Yo + Y1 2= z0 + zq

(34)

(35)

(36)

(37

(38)

(39)

(40)

the relations between x, y, z and the Euler angles can be linearized to
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give:

X = e cos 80 cos ¢D - {1 + eo) [sin 90 Cos ¢D Bl +

(41)
cos 80 sin ¢o ¢l]
Vg = & oS 90 gin ¢0 - {1+ eo) fsin 80 sin ¢0 81 - (42)
cos BO cos ¢0 ¢1]
z. = -e_ s5in 8 - (1 +
Is 1 o~ F e )cos 8 8 (43)

Next we introduce small dynamic displacements {p, q, r] - Uo" along
z &

the static axes directions. To first order, the velocitles v7, v

n

and v are glven as:

n
MR R (44)

& =t £ oN = oN n 3 =7
N Finally introducing Q Qo +0;,Q Q) + QY By = Py, +

FHl’ ﬁH = ﬁHo + ﬁHl’ using (11), (12) and subtracting (6) from
(1) and (7) from (2) and linearizing we obtain the following linearized

equations of equilibrium of forces and moments in the Eo’ Eb and ;0

directions:
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-, E .n noo_ & g
- e oD el ] Ay T

Tl 1 o]

s

£ n &8 noy oo _Fo. - Ak
- 312 [QOS - Q0 QO + T QO ] mp . "1

g

_ N & Z an n n
le (Qo Ql + QO Ql) + T0 Ql + QO T, +

1

E AN a0 _ no_ £ £ ozl
- Qo ﬂo * Qo Q0] 823 [Q TO Qo +Q QO

B12 [T, 0s o

oS

= mq . *o2ep, Ay W' - Fgl - a*

no_ £, & E L. of A £ _ AN of
le (23 Ql +.Qo Tl) +Q Ql + ﬂo Ql + B23 [Qos Qo Qo *

o]

g

n _ n n &
To n0] + B13 [Tos Qo Q0 + Qo Qo]

- - 9. £ _m n
mrtt 2cpi Ai u FHl - A

P ok mm EEyv(cf oM 4 N by 55T 0
e @D+ €1 - m1foiat all ¢ g 0%= P uE 4
Wit @af +lut -t o] -8 @ -

g c
M2 -
i G

EE &y _ n P nn N o & aN
(EI . Ql)S Q + (GLe - EI e) (Qo a; + Q 91) -

- z _ & ¢ £¢ g
Bla Mg =d T wgt el P 2oy + @ W - 2 Wty (33% - I

Z . n n z & £
(Qo w' o+ Qo w)] - Mﬁl -9

-
Qo]

(45)

(46)

(47)

(48)

(49)



28

m SN £ _ P_ peté Z o3 £ o6
(E1 e Ql)s + Ql (GIg EI e) (QO Ql + Qo Ql) - (50)

g

_ Z_,m n m n E L _ &
813 Mﬁo J el + c[Ji (ZQlt + Qo w QO w?) +

t

gL _ [CC £z z & n n
(Ji Ji ) (Ro W’ o+ Qo Wyl - MHl -9

where the right hand sides of (48), (49) and (50) are cyclic permutations

Ofc,gaﬂdn.
It is noted that the terms within [ ] in the left hand sides of

equations (45) to (47) can be also written as follows due to the static

equilibrium equations (6) and equation (8b):

, CnE NN oF e O FC (6a)
Fl Tos Qo Qo * Qo no Wc12' FHD

- a8 n A n _ o L& (6b)
FZ Qos Q S?'c: + T, 8 Wc22 FHo

= an - 2 €l aye®_ghn
F3 Qos To n0 * Qo Qo 32 FHo (6¢c)

where Co = (cij)'
Next we observe that (28) to (30) and (38) to (40) can be reduced by
ope time derivative if we use equations (35) to (37) to eliminate

W° mg and ). Thus we obtain using (44):

»

P+ nf r - o q= 1 /EA (51)
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n_ _ o8 . _ (52)
qs + Q0 P Qo T (1+ eo) 812

z & . 53)
r+ QO q - ﬁo p=(1+ eo) 813 (

where B,, and 8,4 are given by (19) and (20) in terms of the Euler

angles., Similarly (38) to (40) give:

L . £ l
ot B23s TR Bt % B1a (54)
& 7 z (53)
5 = - -

1= Pras T 9 Byy - 9] By,

n g 4 _ ok
) = Bypg =G5 By ~ 95 Byg (56

where (19) to (21) can be used to express 812, 613 and 8p3 in

terms of the Euler angles. Relations similar to (52) to (56) for small
deformations of naturally curved inextensible rods can be found in Love
[12]. Similarly, the angular velocities can be expressed as follows due

to (19) to (21) and (35) to (37):

23 ¢t (57)
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£ e 8 (58)
13t
no_
wh =B, (59)
Choosing

g E AN, & &

w, = [T, . . n,

1 1 Q1 Qs 8, 97, 85 ¢, 8, v5 Py 4, T (60a)

X . * T
1’ yl’ zl; Sl]

as our dynamic solution vector, we need 16 independent equations for a
complete formulation of the structurally linearized problem for compliant
risers. These equations are briefly enumerated below:
- Six equilibrium equations (45) to (50) where all problem
variables

- -+ > 6
A ) are or can be

(B, B13s Bygs® » Fyps Mpps 5,
considered to be expressible in terms of ;l’ 3, t.

- Three compatibility relatioms (51) to (53).

- Three relations (31) to (33) relating the dynamic Euler angles
with the components of ﬁ]'

- Three relations (41) to (43) relating %,, yp, and zy with
the Euler angles, where e, 1is replaced by Tl/EA‘

- Equation (61) for si = gk - 5 *
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*
51s = T{/EA (61)

An alternate choice for the solutlon vector is:

> = E N, o8 o8& B,
wl [Tl, Ql’ Ql’ Ql, Q]_’ ﬂl’ 812’ 813’ 823; Py, 3, I3 (60b)

* T
xl’ Yla zl; Sl]

In this case the complete set of governing differential equations
remains the same except for equatioms (31) to (33) which are now replaced
by equations (54) to (56). If this formulation is used, ¢;, 9, ¥;

can be determined by solving (19) to (21) to give:

(19a)
¢l = (312 cos ¥, - 813 sin wo)/cos 60
6, =- (B, sin ¥+ B4 cos ¢ ) (20a)
Wy = Byy + tan O (B, cos Y - B, sin P ) (212)

To complete the statement of the structurally linearized dymamic
problem, in addition to the set of sixteen independent governing
equations given above, a consistent set of boundary and initial
conditions 1s required. These conditions depend upon the configuration.
For example, in the case of a buoyant riser configuration [7, 8], a

consistent set of boundary and initial conditions involves the

prescription of all:
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o linear displacements of the centroids and Euler angles of the
cross sections at s = 0 and s =L for t > 0; 5;%(0, t) = 0 for
t >0 and
o Euler angles and their time partial derivatives at t = 0 for all
8.
The prediction of the extermal dynamic loads -le and -ﬁﬂl
appearing in the equilibrium equations (45) to (50) is one of the more
important factors in a successful modeling of the dynamic behavior of
compliant risers. Until rational methods allow the prediction of these
loads in separated flows, approximate estimates based on strip theory and
experimental two dimensional flow models may be used for design purposes,
Patrikalakis [15] and Patrikalakis and Chryssostomidis [24], {25].
Subsequent analysis reported in this work deals with the linear
eigenproblem associated with our governing equations. We, therefore,
neglect all structural and external damping loads, i.e. we set 3,5,
and the damping components of §Hl and ;Hl equal to zero in equations
(45) to (50). Next following strip theory [26], we approximate the added

pass (inertia) components of the external loads in equations (45) to (50)

(62)
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yL— (63)

T = .58 2

£ n Lz

where m m,,J, are the added masses of the cross—gection in the £

al
and N directions and the added inertia around g in a locally two
dimensional flow. The values of mg, m 2 and chdepend upon the
geometry of the cross-sectiom {26]. Within strip theory, we neglect

Fﬁl’ Mgl and M%l. In order to take into account the effect of
large buoyancy modules to the tangential inertia of the system, we may,
however, use

[
Fap = -m2 pp, | (65)

where mg is the added mass per unit length of the buoyancy modules in

the 7 direction. For the bare uniform part of the riser, we use mg =

0. The following definitions now allow a simplification of the

equilibrium equatlons:

= + N = - i, 6
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SN < S
Iz I+ 1 (67)

Using the above approximations for the external loads, the resulting
simplified form of equations (45) to (50), useful in the study of the
associated linear eigenproblems, 1s obtained by

o replacing the right hand sides of

equation (45) by m% Prt :
equation (46) by m% Q¢t + 2CpiAiwn ;
equation (47) by m? rtt - ZCQiA_iwg : ;

equation (48) by J%C wC+C[J?C(29%t+QENg'Q§wﬁ)+(J?n'J%£)(ng£+ﬂgwn)]and
o neglecting MﬁT’ @E, MH] and o" in equations (49) and (50).
In the sequel we will study monochromatic response with eircular

frequency w. This is, of course, consistent with the final linearized
form of the governing equations under consideration. In the sequel we

will factor out this sinusoid time dependence by seeking solutions of the

form

-

w (s, t) = Re [w (s) &™F) (68)

where Re[ + ] denotes real part. In the sequel, we will neglect the .
=

from W, (s) for simplicity of our notation. If (68) 1s introduced in

our governing equations, and e1wt ig factored out, we obtain the

following set of coupled complex linear ordinary differential equations.
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1. Force equilibrium in the Eﬁ, Eb and ﬁo directions:

£ N n .& n & E N =
Tie - Qg & Qo Q) +Q, Sy + 87 Q) = (B, Fy + By Fy)

2 T

£ n .- N n n - =
le - (Qo nl + 90 Ql} + To nl + QO Tl + 812 Fl 823 F3

- u? mg q + 2 dwc p, A, 312

n _ g g N4 z £ -
Qg = (T S0 + G5 T) + Q) &7 + 85 Q) + B/, F) + 8, F,

- wz mg r + 2 iwce Py Ai 813

->

—-> -
2. Moment equilibrium around the Co, £, and Ng directions.

P % m_ .88
(6T, @D + (BT - EI°2) (gg n? + 92 gi) -

2 T2 . 42 Z_ £
I AN _ _ nn 23
T Py ¥ dwe (077 (207 - Q) 83 - 07 8,0 + ] - 17D

+0°

_an
¢ Qo B13 o 812)]

b8 AL n :
e “17g Ql (-GIE El e) (520 Ql + Qo Ql) -8 MHC

wo I B+ dw 3 £ n
13 c[Ji(Zﬂl+.Qo 812-90 523)+

cg my ,aC
+ (J°? - 7T ]
i 1) G 8, + 2, Byq)]

m 4N g P EEy of oF 4 of o8y - T -
(E1 e Ql)s.i + Ql - (GIe - Bl e) (no Q]. + Q(:.* S'z].) B13 MHO

_ .2 .mn nn n E Z
w” I By, + dwe [J i (2 Q) +Q By + 513) +

23

&L Lz £ z
(F78 = J74 ) (&5 Byy - 07 Byg)l

(69)

(70)

(71)

(72)

(73)

(74)
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Compatibility relatloms.

3 n __
Py t+ Qo T - QO q = TllEA

n z
+ - =
9, fi,p Q@ r 1+ eo) 812

Z g -
rs + QO q - Qo P 1+ eo) 813

Relations between B.,, 8,4 and Bpqy &nd the components

.

of Ql:

C n
L Big + 5, By

1= B

£
23s + QO

n R4
+ QO B QB

- -
& 8 23 o 12

1 13s

no_ _ ot _ ot
Q = Bps = 90 By3 — 9 823

Relations between X,, yy, and zl'with 512, 613:
X
1

sin 60 cos ¢0 sin ¢o] - 813 [sin ¢° sin wo +

sin 8o cos ¢, cos wo]}

g = (TleA) cos B cos ¢ - (1 + eo) {812 [sin ¢_ cos ¥ -

(75)

(76)

an

(78>

(79)

(80)

(81)
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Vig = (Tl/EA) cos 90 sin ¢° - 1+ eo) {812 [-cos ¢0 cos wo -  (82)

sin 90 sin ¢° sin wo] + 813 [cos ¢O sin wo - sin Bo sin ¢D cos ¢o]}

2o = - (flfl/EA) sin Bo + (1 + eo) cos 90 (13]_2 sin ¥+ 313 cos ‘Po) (83)

6. The relation

Sy % = 'Il/EA (84)

In equations (69) to (84), the second form of the solution vector,
equation (60b), is implied. A consistent set of homogeneous boundary
conditions necessary for the solution of the eigenproblem defined by

equations (69) to (84), appropriate for geometries with fixed, clamped

ends, isa:
(85)
p=sg=r1= 812 = 813 = 823 = 0 for s =0, L
5, (0) = 0
1 (86)

Due to (1%a) to (2la), the relations 812 - 813 - 823 = () for 8 = 0
and L are equivalent to ¢l = 91 = wl w0 at 8= 0 and L. Obviously
p=q=rm=20 at the ends also implies X =y =z " 0 there.

Relations (81) to (84) can be integrated independently of (72) to (80),



once Tl and 512, 313 are available and can, therefore, be treated
separately. Once the integration of (81) to (83) begins at s = 0, the
values of %, vy and 2z, and s = L, obtained by this process,

g 8
provide an estimate of the accuracy of Tl, 12 and 13°

Alternatively, X, N1 and zq can be obtained more directly by:

T_ AT
[}91) yll Zl] = Co . [P’ q’ r]T (87)
which may replace equations (81) to (83). In the sequel we will omit
equations (81) to (87) and the determination of X, y;, z; and
8,% from our discusslon. In the solution of the eigenproblem (69) to

(80) under boundary conditions (85), the frequency W is also an unknown

and therefore our reduced solutiom vector now becomes:

- E N, a8 o8 oN. R . w1l
e [Ty, Q3 Q3 Rl, 91, ﬂl, Bu’ Bise By Ps 9s T3 w] (88)

1f the values of ¢, 6, and V¥, are also desired, equations (19a)
to (21a) may be employed. The twelve independent homogeneous
differential equations and boundary conditions (69) to .(80) and (85),

allow the computation of the "natural frequencies”, w, and the associated

"modal shapes.”

II. 3 NON-DIMENSIONAL GENERAL THREE DIMENSIONAL GOVERNING LINEAR
DYNAMIC EQUATIONS FOR MONOCHROMATIC RESPONSE
It is convenient to non-dimensiounalize our governing equations (69)

to (80) as follows. All forces are non-dimensionalized by the wmaximum
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static tension T'om' and all lengths by the unstretched lemgth L of the

riser. We, also, introduce the following non-dimensional parameters:

)
e =T /JEA
om om
12 P/m' 2 _E EE,.' .2 .n M, 2
e = GIY/T - -
e e/ om L, ee EI e/Tom L Ee EI e/Tom L

L= uL @)t
Ky = epy &y (m% T )2
A = L(Eo/so51/2

]

¢}

o
e

where ﬁ% is the average value of m% along the length.

(89)

(90)

(91)

(92>

(93}

(94)

(953

(96)

The non~dimensional form of the governing equatioms (69) to (80) can

be shown to be:
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- > -
1. Force Equilibrium in the Z, ¢, and N, directions:

_ (o8 on n .& £ & n
T, - (@ ]+l QD)+l e+ i) - (B, F, + 85 Fy) = - 2P0 p

E _ (N ot Z 4N n n
Qe = Q8 +87Q) +T O + 8/ T) + 8y Fy - Byy Fy =
= _ 728
I h® q + 2 iX Ki 812
no. E . 0b o8 4 ofF of 7 o=
Q= (T Q7+ QT F QA+ A0 T By Byt By Ty
- _ ¥2..M ;
“n'r+ 21l Ky 813

+> - >
2. Moment Equilibrium around the £, So and N directionms:

@D, + - D G - gt s

n .
e, - 958+ 00 -ah @ e, -8 )

o 12

: L z _
G Qi)s - Q]+ (] - €D (@  + Q> 0)) - By My,
z n
= (C/Z5)? B, +iL [xi 2 ni + 0B, - O By *

s 0f oD @y, + ) By3)]

Ny £ g P L o8 £ & T
(eg Q) + Q7 + (e =€) (@97 + 85 Q1) - 85 My

2

Blz +

= - /2N riz ) @]+ Qg B + 95

23 513

& _ 4% g Z
+ (A =A@ Byg - 47 Byl

; Z L
+ i E[Ai(Z Ql -

(97)

(98)

(99)

(100)

(101)

(102



3. Compatibility relations

E __ ol . =
P + QD r Qo q T

n_ o
qs+.Qop Qor

S
Ts + s-20 4 Qo P

4., Relations between B

129
5l
1
Eap .+, +Q08
iy = By3e 12 7 Y% P13
F=-p. +a0p. -0°8
1 13s o 23 o 12
n _ oG _ob
Q = Bypg — g Byg - 07 By

where non-dimensional quantities are denoted with the same symbol as

(L +e) By,

a+ eo) 813

513 and 523 and the components of

(103)

(104)

(105)

(106)

(107)

(108>

dimensional quantities. The form of boundary conditions (85) remains

unchanged.
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II.4 NON-DIMENSIONAL THREE DIMENSIONAL GOVERNING LINEAR DYNAMIC
EQUATIONS FOR A PLANAR STATIC CONFIGURATION AND MONOCHROMATIC
RESPONSE.

The governing equations are substantially simplified when the
centerline of the riser in its static configuration lies entirely on the
+

x-y plane and there is no static torsion. In this case the vector Co

- -
and Eo 1ie on the x-y plane and N, = k. For this case we have

P=at=at=n"=0 =y =0 (109
B12 = % (110)
313 = - 81 (111)
Byg = ¥y (112)
PR T T T = (113)
R, = Qg * T, 8= W ey~ o (114)
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(115)

= sin ¢o C22 = cos ¢o (116)

In this case, the governing equatioms (97) to (108) camn be separated into
two independent sets of six coupled first order differential equations.

The first set describes out-oi-plane linear dynamics:

L - g_EC _ _2;;_.
Q' TQ & Q Ql +F 8 ~F ¥ I"h ' r-21i Z Ky Bl (1L7)

P - _ P b £ Ny N 8 _ 2
eP 0 e S+ (e ) Q 9 (T/Ap)™ ¥y +

e 1s 1 e
(118)
. C Z n n_ &5, on
iZ [li (2 a7 + Qo el) + (li A7) & 81]
€ & - E &6 n n Py on ob £,2
€2l = e+ Q + (g, - £) G 8 - BATT 8y + (119)
g £ n L Ny AN
T [37 (2 97 - Q) ¥ + Of -Ap Q%)
=5 n (120)
e1s -8 ¥
. ot n
Y = 0+ 006 (121)
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r, = - (1 + eo) 81

The second set describes in-plane linear dynamics:

B on, o of _ 2.8
T =Yy FR G Ty b m O RTP

E o an_g'r - N ;
Q —To Ql Qo T Fl ¢1 o- h’ g+ 2 icC Ki ¢1

1s 1

nan _ n &N _ 6. N2 n AN

el Qg =~ €og Q) - Q7 (0/AH° ¢, + 2 10 A %
_ N

¢ls B Ql

n

= @ +e)d d -0 0

(122)

(123)

(124)

(125)

(126

(127)

(128)

Given that equations (117) to (122) and (123) to (128) are uncoupled, we

used two diferent symbols, £, 0 , for the assoclated non-dimensional
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“natural frequencies”, respectively. Equationms (119} and (125) can be
further simplified by assuming that E/AE and o/\" are small. If D is a
typical outer dimenmsion of the cross-section then we estimate that A8
and A" are both of O(L/D) which is large in the application of

interest. For frequencies I, 0 << L/D, we will neglect (E/XE )29]

and (Ulln )2¢1 from equations (119) and {125). For a taut flexible

riser and low order modes I,0 are of O(n 7) and typically L/D is of order
300 so that very high modes can actually be modeled in this manner. Note
that we do not eliminate 2 similar small term (Z/AT )zw] from equation
(118) to account for dynamic torsional effects as the frequency increases
even in an approximate manmner. fhese approximations correspond to the
simpler Euler-Bernoulli slender rod theory, see Crandall et al [21}. In
addition, the terms l?, A? and A? are very swall for the internal

flow speeds and L/D ratios of interest. For typical values of Eé and

T'om’ we estimate that all Ai'Sare of 0(10—2c(D/L)2) with ¢ in m/s

and will therefore be neglected in the sequel, see also Hill and Davis
[18]. Under these further assumptions, equations (118), (119) and (125)

are replaced by:

PoL . _ P oF E _ Ny &N 5 2 (118a)
E;e le Ees 91 + (Ee Ee) Qo 91 - (E/AT) wl

E 85 - _ B o8 n n Py AN AC (119a)
Ee g Ces S‘al Q4 (€e - Ee) 4, 8y
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S O R (1250)
Finally, for typical values of DiAi’ﬁé’ and T'om we estimate
that k; 1is of order c/100 where ¢ is in m/s and therefore the
magnitudes of the Coriolls force terms due to the internal flow are small
compared to the imertial terms. An estimate of the effects of these
terms on the natural modes and frequencles can be found in Appendix A.
In all subsequent analysis we use ¢ = 0 and we, therefore also drop

subscript e from £P, EE andc’ .
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CHAPTER III

OUT-OP-PLANE LINEAR EIGENPROBLEM FOR A PLANAR STATIC

CONFIGURATION OF A COMPLIANT RISER

III.1 Introduction
The governing non—dimensional differential equations for this

problem, simplified as described in the previous section, are:

n . E _ A8 b 2.n
le To Ql Qo ﬂl + Fl 61 - F2 ¢l - h T

of = (=e® b+ (f - M afl 9f - @iap? v 1/ef

I - 3 n n Py N oby/e8
le [ €2 Ql + Ql + (g - €%) Qo Rl]/e
_ s N
sls Q1 QO wl
_of Lo
lI'Ils Q1 + Qo Bl

r.=- (1 + eo) el

The boundary conditions corresponding to fixed clamped ends are:

r=6 =y =0 ats=0,1

(129)

(130}

(131

(132}

(133)

(134)

(135)
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In Appendix B of this work, we write the governing equations (129) to
(134) in terms of the basic variables r and Y, and prove the following

orthogonality condition which the natural modes need obey:

1l N -2 _ .
IO [h rs #j + AT wli wlj] ds = 0 for i#}

where subscripts 1 and j denote two different natural modes. In this

work we also chose to use the following orthonormalization:

1 n -2
IO [h T, Ty AL Yy ¥p51 ds = 613

where Gij is Kronecker's delta, dij =1 for 1 =Jand §545 = 0 for
i# 3.

General methods for the solution of two-point eigenproblems can be
found in Keller [27], Ferziger [28] and Pereyra [29]. In this work, we
solve (129) to (135) by embedding our problem into a more general class
of eigenproblems [29). Symbolically our problem

Wt =T (s, W), B lw (@, W @W]=0 (136)

where prime denotes derivative with respect to s,

[wi(S)’ wz(s).... wn(s)]T is the solution wvecter
T

e 8¢
i

T > _
[f1: f2 s fn] y 8% [gl 82 “s gn]

0 <s <1, and [ ]T denotes transpose

iz embedded into
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-, - - - e C e
w' =f (s, w; £€), g [w(0), w (1); €] =0 (137)

where € is a continuation parameter, 0 <e <1, and when £ =1 equations
(137) and (136) are identical. Using the embedding technique, a sequence
of problems with values of € such that 0 = €4 < gy <hu< gp = ] are
golved. The solution of the problem involving ék uses as initial
approximation the solution of the problem invclving €ra1 ° The solution
of (137) was obtalned using a non-uniform grid finite difference method
[29]. The non-uniform grid was necessary to permit efficient resolution
of boundary layers near 8 = 0 and s = 1, see (15]. The solution of the
finite difference equations is based on a modified Newton's iteration
method coupled with a deferred correction technique also described in
[29]., This method uses an approximate solution of the problem and yields
a more accurate solution which makes the absolute error less than a
prespecified tolerance. During the solution process additional grid
points may be inserted automatically to reduce and equidistribute the
error on the final mesh. Our code uses the Fortran library described in
[30] and has been implemented with double precision.

In our embedding technique for (129) to (135), we use as our solution

vector

v = [Qg; Qi, Q%; 8s wl; r; A]T . (138)



50

where
A= z? (139)
In order to bring the elgenproblem (129) to (135) to the form implied

by equation {136), we use the obvious equation

A =0 (140)

and we introduce an additional boundary condition

Qi (0) = I = constant (141)

which will only scale the modal shapes. In this manner, we converted the
eigenproblem (129) to (135) to a standard non-linear two-point boundary
value problem (129) to (134) and (140) with boundary conditions (135 aézd
(141). Once the modal shapes are obtained, the scaling implied by (141)
may be modified at will. '
In our embedding technique for out-of-plane linear djnamics of a

buoyant compliant riser with a planar static configuration in the
presence of current, we Teplace

o equation (129) by
no_ _— £ -E % ¢
rqls [1 +‘e (r, - 1] 91 -€Ql A +¢e (F) 8, - F, §;) - (129a)

-

AW +e @ - ;”)].r
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equation (130) by

1ls

equation (131) by

£

8

o5

- e e @ o S

equation (132) by

g

| . n
O = - €0, ¥

equation (134) by

r, = - 91 - £ e 61

where EP denotes the average value of W' along s.

In this manner, when € = 0;

—

2
= [-e? 05+ - eh 9 ok - & (A y1/e”

{130a)

(131a)

(132a)

(134a)

We use the maximum value of the static effective tension (= 1)

in equation (129a) which is a good approximation for buoyant

risers in a current.

We neglect the effect of coupling of static shear and torsion on

lateral dynamic bending in equation (12%a) because this is very

small except near the ends.
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- We neglect the direct effects of effective weight and external
force terms, through the term F, 91 - F ¥; in equation
(1292) because they are expected to be small for the systems of
interest.

- We replace n" by its average value in equation (12%a), which
is a good approximation for systems with uniformly distributed
buoyancy modules.

- We treat torsion quasistatically by neglecting torsional inertia
in equatfon (130a), because this is an excellent approximation

_ for the low frequencles of interest, A/A$ << 1.
- We neglect the effects of dynamic torsion on dynamic shear in

equation (13la), because they are very small except near the

ends.
g

T - We neglect the effects of torsion on the determinatioam of Ql
in equation (132a), because they are small away from the ends.
- We neglect the static strain e  effects in equation (134a)

because eo << 1,

As we will see in Section III.3, the initial approximation we obtain
in this fashion 1s actually very close to the exact solution for the
first few modes of practical interest. This occurs because our

approximation retains the effects of all major forces.

For the case of very aﬁall or zero current, the initial approximation
described above 1s not expected to be good. In such cases we adopt a

different embedding technique, which allows us to derive a good initial
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approximation from which the solution of the eigenproblem can be
obtained. In this case the governing equations {(129) to (134) are kept
the same. Similarly all boundary conditions at s * 0 and the boundary
condition for 6_1 (1) remain the same, Finally, the boundary
conditions 8(1) = r (1) = 0 are replaced by:

B (1) = a(l -¢

r(1) = b(l -¢)
where a and b are constants.
III.2 Initial Approximation of the Solution
III.2.1 Initial Asymptotlc Approximation of the Solution

For the first method of embedding described in the previous gection

and for € = 0, the complete set of governing equations reduces to:

o - of For= 142)
le Ql + A hn r=10 (
C €t - e Q‘E (143)
N (& b , -
Qs (144)
£ |
=8 |
Q1 1s (145)
Vig = Qi + 0y 8 (146)
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81 =-7 i (147)
(148)

The boundafy conditions (135) and (141) remain the same. We observe that
the equations describing out—-of-plane bending are now uncoupled from
torsional effects, which can be determined by using (143) and (146) once
r(s) is known. Combining equatioms (142), (144), (145) an (147) we
obtain the following differential equation for the out—-of-plane

displacement r:

e fr )  Hr pAR =0 | (149)

The boundary conditions for r reduce to

r=r_*= 0 ats=20.1 (1590)

g

For the applications of Interest, where €°<<1l, an approximate
analytic solution of (149) can be obtained by simple boundary layer

theory, Carrier and Pearson [31]:

r(s) ~ A sin {Z \/ﬁs] + B cos [L\/E—n s] + T exp [-s/ Eg 03+ (151)

Aexp [~ (L -8}/ s
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An alternate method to derive an asymptotic solution of (149)=(150) using
the WKB method can be found in Kim [32]. When.sg(s) is constant with s,
the exact solution of (149) can, of course, be obtained and can be
approximated by'(151) for b << 1.

Applying the boundary conditions (150) and neglecting exponentially
small terms in the application of the boundary conditions, we obtain

~ r(s) ~ B {-1/v0' sin (c's) + cos (0's) - exp (=s/v) + (152)

(cos 6' + g'v sin 0') exp [-{1-s)/Vv]}

where

o' = IyR" | . ' (153

obeys the characteristic equation

[1 - (@'v)?] sin 0’ - 2 0"V cos ' = 0 (154)

and the usual casé

2

T

b)) = 5y = v (155)
has been assumed with V<<1, Equation (152) and (154) are expected to be
accurate for modes up to 0(1/v7T). For modes of 0(1/VT) or higher

bending effects are at least as important as rension effects over the
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entire length. It is expected that an approximate solution based on the

average value of eg will give better results than equations (152) and

(154) in this case.

Once r(s) is available we can use (145) to (147) to determine ¢1

by integration of (143):
- BN ' 5 P 1
¥y (&)~ Cy = S 8y x dst + Gy Sy (1/e7) dsT + (156)

I8 /ePy ds' s8 (e - By @ .
0 €) ds Jr0 (€ €”) Qo rss ds

where 8', 8'' are integration variables. By applying 1b1(0) =

= ¢1(l) = 0 we obtain

¢, = (/52 (/ePy as') - 2l x as -

. N . | (157.a)
J_.é,(ljep),_é?:._ fo @ - ar asn
C, = 0 - (157 .b)
In our caleulations B in equation (152) is fixed by the
orthonormalization condition
(158)

2 2
/L e+ anyp vilds = 1

in order to later allow comparisons with the exact mode shapes. Once B

is fixed in this msuner, the value of the comstant I in (141) is also

fixed and equal to
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I=5 {02+ 1/v ' (159)

with exponentially small errors. The above analysis requires the
numerical solution of (154) to determine 0'. This was done using
Powell's hybrid method [33]. The integratioms appearing in (156) to
(158) were performed using the trapezoidal rule.
III.2.2 Initial Numerical Approximation

As explained in Section III.1, the asymptotic approximations used
there are not expected to be good for zero or very small currents for a
typical buoyant compliant riser. In such cases the linear boundary value
problems (129) to (134) under

B (0) = r(0) = 6,(0) = 0

B (1) = a(l -¢), r(1) =b(l-€), 8,(1) =0
1s solved for €= 0 and a series of values of T close to the expected
natural frequencies. Approximate order of magnitude estimates of the
nqtural frequencies of highly buoyant compliant risers for zero or very
small currents can be obtained by idealizing the riser as a string. For
each value of L chosen, the above linear forced undamped problem can be
aolvgd.for ¢ = 0 using a non-uniform grid finite difference method,
Pereyra [29]. Each of these solutiona can be a starting point for the
gsecond embedding technique. The resulting non-linear problem at each
gtep £ = Gk is solved by the method outlined in Section IIL.1, see also
Pereyra [29]. The above solution method can be also applied in the case

of a strong current with no modification. The final numerical results
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for € = 1 obtained using the methods of Sections II1I.2.1 and III.2.2

should, of course, be the same, This has also been verified as an

additional check of our computer programs.
I11.3 Numerical Results for a Buoyant Compliant Riser

The structural design detzils of the buoyant compliant riser analyzed
in this work can be found in [7]. The same riser was used as one example
for the static solutions presented in [10] and [11]. In the sequel, we
summarize the riser characteristics for the reader's convenience, The
riser is made up of two flexible tubes with inner diameter of 85.7mm and

outer diameter of 122.9mm. The overall riser characteristics are:

L = 88.39m; W=W_=2,92 N/m; EA = 267 MN; EI" = 3.3 W.n? ,

£155= 12.2 kN.n?%; GIP = 0.582 MN.m%;

DE En

e

2

- 0.31m, D" = 0.20m; P, = 0.93m; A * 237.4 cm;

A, = 115.4 cn®; o = 820 kg/u’; p = 3.45 MPa; c = 0;

‘- 0; mf = 82,44 kg/m;

A3
J&

m = 49.93 kg/m; m” = 40.47 kg/m; m

a
£t = 0.0781 kg/m;

m: = 50.32 kg/m; J°° = 0.4932 kg.m;

vertical distance of lower support, s = 0, from ocean floor is 7.62m.

The value of the effective weight was taken constant becéuae it was

assumed that buoyancy is provided by small uniformly distributed

modules. For the same reason, effective constant values of D', Dn, Egn,

L t & n g (48
m, m , ma' m,s My, J and Ja are used in this work. Due to

the presence of strain relief units at the ends, the following values of

bending and torsional rigidities at s = 0 and s = L were used:

E1™ = 6.6 kN.n?; EI " = 26.4 kN.n?; GIP = 1.164 MN.m®. These

rigidities were assumed to decay linearly to the previous values within
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10m from 8 = ¢ and 8 = L. The two dimensional static configuration used
in this section corresponds to the minimum water depth for the
application described in [7]. In this case the water depth is 80.77m and

h, = h; =73.15n. The static boundary conditions are xp, = 0,

Yg, = 70.10m and $,(0) = ¢°(L) = 90 degrees. Two excitatlon

conditions were examined. In the first case, the external excitation is
due to a limear curreat with V_(0) = 1.03 m/s and Vx(hw) = 1,55

m/s. In the second case, no external current is present. The static
solution for these cases can be found in [11]. In particular the maximum
atatic effective temslon for the first case 1s equal to 7.973 kN and for
the second case 0.143 kN.

Case 1: For the first case, the values of the parameters of Section II.3

used in this work are:

e =29.9 x 10°%;
om

P - 9.34 x 10°3 to 1.87 x 1072 (at the ends);

4

£ 21.96 x 1074 to 3.92 x 10”™* (at the ends);

5

&N = 5.30 x 107 to 1,06 x 10™* (at the ends);

v=1,98%x 1072
w® = 0.377, ne = 1, n"= 0.757;

T = 11.389%w, where w 1s in rad/s;

Ky = 0.0092c, where ¢ is in m/s;

;\T = 1343.5
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The values of these parameters justify the approximations and simplifications
made in earlier sections for the particular riser and excitation condition for
Case 1.

In order to determine initial estimates of the first few out-of-plane
natural frequencles for the first excitation Case, we solved (154) and we
obtained the results shown in the second column of Table 1. These values
ghould be compared with our final converged numerical values for the
out-of-plane natural frequencies shown in Table 1 obtained through the first

embedding technique deseribed in Section III.].

TABLE 1: OUT-OF-PLANE NATURAL CIRCULAR FREQUENGCIES (IN rad/s) FOR A BUOYANT
COMPLIANT RISER IN A LINEAR CURRENT (Case 1)

Mode No, Initial Estimate Final Numerical Error = (E;-Ef)
(Eq) Value (Ef) x 100/B1
1 0.330 0.320 . 3.0
2 0.660 } 0.649 1.7
3 0.990 0.966 2.4
4 _ 1.319 1.308 0.8

5 1.648 o 1.652 -0.2
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The error is less than 3% which indicates the usefulness and accuracy of the
asymptotic approximation of Section III.2.1 and the quality of the embedding
choices in Section III.l.

Similar comments can be made for the comparison of the natural modes
obtained through-the asymptotic technique of Section 111.2.1 and the final
converged values obtained through the first embedding technique of Section
III.1. Figures III.1 to III.3 and ITI.4 to III.6 show the results for the
first mode obtained using the asymptotic and the embedding techniques,
respectively. Figures III.1 and III.4 show r,lgf (denoted by R, BETA in these
Figures); Figures III.2 and III.5 show Q? and QF; and Figures ITI.3 and
I1I.6 show Gl and Q? .  The solid and dashed lines correspond to the lower
and upper axes, respectively. The values plotted are ofthonormalized as
described in Section III.1. Figures III.7 to III.D and III.10 to III.12 show
the corresponding results for the second mode obtained using asymptotic and
embedding techniques, respectively.

Figures III,13 to IIL.18 show our results for the third to fifth modes
obtained using the first embedding technique described in Section III.l.
Figures III.13, III.15 and III.17 show r and uﬁ_ (= R and BETA, respectively).
Figures ITI.14, II1.16 and II1.18 show ni and f. Pigures IIL.1 to ITL.18
also show the values of ~the associated natural circular frequencles for
the first Case summarized in Table 1.

An estimate of the accuracy of the results obtained using the embedding
tecﬁnique can be obtained by numerically checking the mode orthogonality

referred to in Section III.1l. If we denote by Aij the numerical value of
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the integral
"z, oz, + AZ2 P, U,,) ds
1557t 11 "3

we see tnat the calculated values of Aij for the solutions obtained from the

embedding technique satisfy the inequality

|85 - 8341 £0.47 x 10~2
for 1, § =1, 2, 3, 4 and 5, which 1is very good.

As expected from equation (152) for Vv << 1, the modal shapes are nearly
sinusoid outside the boundary layers near s » 0 and s = 1. The width of the
boundary layers is clearly identifiable in the plots of ﬂi , QE . 61, and
Qg. For the low modes studied here, the comparison between aaymﬁtotics and
embedding results for ﬂ& and S?i) indicates that torsional effects can be
treated quasistatically. This is not surprising because the first torsionmal
natural frequency 1s very high. An estimate of the first.tofsional.natural
frequency can be easily cbtained from equatioﬁs (130) and {132) by neglecting

coupling with static bending (i.e. by setting 92 = 0). This leads to

€ )+ EAPEe =0 (160)

with

(161)
Y, (@ =¥ W) =0
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For simplicity, we use the average rather than the local value of

P (P = 1.04 x 1072) and obtain
zn=n'ﬁ A-T ‘ep’n-l, 2 [ 1

which gives an estimate for the first torsional natural frequency equal to
47.9 rad/s. For the depths and geometries of interest, the value of the
torsional natural frequencles are sufficiently above the surface wave and the
vortex induced frequencies due to currents to make the guaslstatic
approximation of Sectlon 1II.2 for the torsion very accurate.

We believe that the practically more important result is the shape of. the
dynamic curvature component QE . The sharp rise of 19?1 within the boundary
layers indicates that the designer needs to pay close attention to the actual
radii of curvature near the ends due to external excitation in his estimate of
megima and fatigue life of the structure. The‘stréin relief unirts close to
the ends significantly affect these radii of curvature and need to be
carefully designed. The computaticn of these radii of curvature due to
external excitation requires the solution of a nonlinear dynamic problem which
is a subject of current research.

Case 2: Figures III.19 to III.22 show our results for the first two
out—of-plane modes in the absence of current obtained using the initial
approximation of Secticn 1II1.2.2 and the second embedding technique of Section
11I.1, Figures I1I1,19 and III.21 show T and 8 (R and BETA, respectively).
Figures II11.20 and II1.22 show Qi and QE. The solid and dashed lines

correspond to the lower and upper axes respectively. The change of the static
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configuration for Case 2 from the static configuration of Case 1 has a
pronounced effect on £ which ceases to be symmetric or anti~symmetric about
the middle. For the first mode, the position of the maximum displacement T
chifts to s = 0.38 from s = 1/2 for Case 1, due to the effecrs of tension
variation. The first two natural frequencies for Case 2 are equal to 0.054
and 0.105 rad/s which are now significantly lower than the corresponding

frequencies for Case 1 because of the drop of the effective tenmslon due to the

absence of current.
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CHAPTER IV
IN-PLANE LINEAR EIGENPROBLEM FOR A
PLANAR STATIC CQNFIGURAIION OF A

COMPLIANT RISER

Iv.l INTRODUCTION

The governing non—dimensional differential equations for this

problem, simplified as described in Section II.4, are:

o N A8 2.5
T, Q% Q) + 0 Q7 + F, ¢, - © h”® p
£ - - n_No - A 1
Qs T o - R Ty ~Fp & -0 BT
no_ _ 0 £y,.N
ﬁls = {es Ql + Ql]/e

_ AN

¢1s - Ql

n
= +
P QO 1 eom Tl

ik =

qS=(l+eO)¢l-O

The boundary conditions corresponding to fixed clamped ends are

at s = 0, 1

p=g=0¢, =0

(162)

(163)

(164)

(165)

(166)

(167)

(168)
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In appendix C of this work, we write the governing equations (162) to

(167) in terms of the basic variables p and q and prove the following

orthogonality condition which the natural modes need obey:

1
I [hcpipj+h5qiqj]ds=o for 1 # 3

where subscripts 1 and j denote two different natural modes. In this

work we also chose to use the following orthonormalizariom.

z 3 _
f; (b~ py Py + g4 qj] ds = Sij

where Gij is Kromecker's delta.
Tn this work we solve (162) to (168) by an embedding techaique

(169)

described in general terms in Section III. 1. In our embedding technlque

for (162) to (168), we use as our solution vector:
> .l o .
w [Tl’ le gl’ ¢1; Py Qi Al

where

(170)

(171)

Tn order to bring the eigenproblem (162) to (168) to the form implied

by equation (136), we use the obviocus equation
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(172)

and we introduce an additiopal boundary condition

92 (0) = I = constant (173>
which will only scale the modal shapés. In this manner we converted the
eligenproblem (l§2) to (168) to a standard non—-linear two-foint boundary
value problem (162) to (167) and (172) with boundary conditions (168) and
(173). Once the modal shapes are obtained, the scaling implied by (141)
may be modified at will. |

In our embedding technique for in-plane linear dynémics of a2 buoyant
compliant riser with a planar static configuration, subjected to & Strong

unidirectional current, we replace

. o equation (162) by

1, = qfal 4l af+E, 0 - b B4 - DI | (162a)

o equation (163) by

qlz--[1+a(To-lns:‘;-nzrl—rldal-n[1+s(hg-l)}q (163a)
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o equation (167) by

n
gg = (L+ee) P | (167a)

where ;C is the average value of n® along 8.

In this manner, when €=0,
-  We use the maximum value of the static effective temsion (= 1) in
equation (163a), which is a good approzimation for buoyant risers in a

current.

- We replace hC and hE by their average values in equation (162a) and
 (163a), respectively, wihich is a good approximation for systems with
uniformly distributed buoyancy modules.

-  We neglect static strain in (167a) because e << 1 and because we
do not expect a significant effect from this parameter.

As we will see in Section IV.3, the initlal approximation we obtain
in this fashion is actually very close to the exact solution for the
first few modes of practical interest examined in this work. This occurs
because our approximation retains the effects of all major forces.

The numerical solution is performed with the method deseribed in Section
III.1 and Pereyra [29]. '

As we will see in the next Sectionr, the asymptotic approximation of
the solution of the problem for £ = 0 formulated above breaks down for
very small or zero currents. Imn such cases we adopt & different

embedding technique, which allows us to derive a good initial
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approximation from which the solution of the eigenproblem can be
obtained. In this case the governing equations (162) to (167) and (172)
are kept the same. Similarly the boundary conditions (168) and (173) at
s = 0 and for d:l (1) remaip the same., Finally, the boundary

conditions p(l) = q(1) = 0 are replaced by
p(l) = a- € a and g =b-€b (174)

where a and b are constants.

IV.2 Initial Approximation of the Solution

1v.2.1 Initial Asymptotic Approximation

For the first method of embedding described in the previous Section

and €= 0, the complete set of governing equations reduces to

(175)

R T AE _a it

T, =Q %+ +F 6 ~ART?

@ =-gl-0 T -F ¢, - A

1s 1 7% 1”171 < (176)
no_ o eN g0 4 oby/en

9 (e, 07 + Qjl/¢ Q77
o, =0
1s 1 (178)
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p, = gg q+e T (179>
= _ ol

% ¢l Qo P (180)

(181)

The boundary conditions (168) and (173) remain the same. Equations

(175) to (181) model the in-plane linear dynamics of a meutrally buoyant
compliant riser with uniform mass and with a planar static configuration

in a current.

As in the case of cables [34,35,36] an approximate sclutlon to
(175) ~ (181) can be derived using asymptotic techniques under the

following assumptions:

The ratio of the wave speed of the elastic waves Versus the wave

speed of flexural waves 1s large. The elastic wave speed is of order

/2 (182)

Cel - (EK7E§)

where EA ig the average value of the extensional rigidity along 8.

Similarly the flexural wave speed is of order
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A

cey Cfl, c Il + 1/2 & (wL/Cfl, C) ]

where

CaE1)2
%1, ¢ " (Tdm/mg} / (183.2)

is the flewural wave speed 1f bending is neglected and

=N _ 55N yme 2 (184)
g' = EI /Tom 1° << 1

the average value of g’ along s, which is assumed to be small compared to

1. Therefore the ratio of the elastic to flexural wave speed 1s of order

cel/cfl = (h eom)':”2 1-1/2 g (wL/cfl’c)zj (185)

where

2 =T' /EA<<1
om Oom

(186)

repreéents a static strain and is very small. For the example given in

Section ITI.3 we find that e _ = 0.3 % 107%, € = 5.9 110 p° = 0.377,

Cey = 2312.5 m/s, Cfl,c = 7.76 m/s

and
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coyfogy T 298 11 - @/11.4)%) (187)

where & is in Tad/s and the derivations assume rhat ¢/11.4 <<1. All

quantities are dimensional in equarions (182) to (187) except for Eﬂ, Eom

and T, The ratio celfcfl in compliant risers is expected to be

higher than the same ratic for mooring cables because of the relatively
high extensional rigidity and the low effective tension present in
compliant risers as compared to cables. The assumption can, therefore,
be made that the gemeral solution comsists of a part which is fast
oscillating in space (small wave length flexural waves) and a part which
is slowly oscillating in space (large wavelength longitudinal waves).

The second assumption, necessary in the derivation of asymptotic
solutions using the WKB method, requires that A>> 1. For the case of a
string / is of order (n'r:)2 where n 1s the order of the mode,

Therefore, we expect that even for m = 1 this assumption will be
satisfied.

Under these conditions the governing equations can be separated
asymptotically into a fourth order differential equation, which provides
the fast varying solutions and a second order equation, which provides
the slow solutions in space. The slow solutions correspond to elastic
waves or, in the limit of inextensible rods, to the instantaneous
read justment of the mean equilibrium position of the rod. 4 speclal
method to determinpe the solution for the case of strictly inextensible

risers can be found in Appendix C, Sectlon C.4.
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IvV.2.1.1 Fast Varying Solutions

In order to derive the goverming equation for fast varyving solutions,

we use the following order of magnitude estimates, Triantafyllou [34]

PE N p (s)

o 68 (s)
(188)

(s)

F 27
LT

where § << 1 , the gquantities with ~ are assumed to be of order 1 and

guperscript F denotes a fast varying dynamic quantity. Due to the

presence of boundary layers in the static solution, we will assume that

-5 Q0 (8s) + L2 gl 5% (189)

~ Lol 1]
where Qg and Qg are quantities of order 1, see [10, 11]. Equarion

(189) expresses the decomposition of QE in a small slowly varying part
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and a large amplitude fast varylag part near the ends. Using (188) and

(189) and (176) to (180) we may derive the following approximate equation

for the fast dynamles:

4N F F F = 190
(e qssjss +q Ag 0 (1903

together with
F~ _F,.n .
SIS JRATA (191)

In order to obtain equally accurate apalytical expressions for pF
and q¢f, we write (190) in terms of pf. If we solve (190) first to
determine qF , we cannot probably integrate {(191) analytically to
obtain pF to the same degree of accuracy. Combining (190) and (191) we
obtain:

_reh F, N P -n F,an
e (Pszno)ss]ss * (ps/Qo)ss + A ps/no ° (192)

Since el << 1, we can find an asymptotic analytical solution of

(192) using simple boundary layer theory, Carrier and Pearson [31]. As a

first step in the solution of (192), we expand the sclution as

pF(S) - pFO(s) + pFl(El) + pFZ(EZ) (193)



86

where
g, = s/ VET(@, By = -9 e"(1)

194
pFl(gl) +0as £ > 1 (194)
1
pAE,) + 088 g, >> 1
For all points except sufficiently near the ends, we obtain
(195)

Fo b ~
(pq fgglss + A Psofgg -0

It is now convenlent to change variables in (195) from s to the

static sungle ¢O by using Qg‘d¢5/d5 and denoting d{ )/d¢o = ( )t

[ — .

pitTH (Qg'/gg)p" +(A/nglp' =0 (196)

where the superscripts Fo were neglected for simplicity.

For A >>1, we can solve (196) using WKB theory, Carrier and Pearson

[31}. In the case of a strong constant current analyzed in this Section

and away from the ends of a neutrally buoyant riser, references [10] and
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[11] indicate that

(197)
Qe sin2 $
o [a]

where
' . _ (198)
A=0.5pD° LV |V /T

and BE is the pean diameter DE, V the current speed and ;o the
dimensional leading order effective temsion, which can be taken as
constant because frictional forces due to the current are negligible,
When the current is not constant and the riser is not precisely neutrally
buoyant, we will continue to use (197) and (198) where ; is the mean
value of the current and Eo is found from the solution of the static
equations using V as our current. We expect that this is a good
approximation for highly buoyant risers and typical current profiles for
the depths of interest., However as §-+0, equations (197) and (198)
cease to be valid because the effective weight although small now plays a
significant role. Situations of this form can be addressed by the method

described in Section IV.2.2. Substituting (197) in equation (196) we

obtain:

s+ 2 cor g p't+ @M esch gt T 0 (199
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where the superscripts Fo were again neglected for simpliciry and

A= cz was used. The WKB method determines the solution of (199) as an

expansion of the form:

b~ exp [0/ £db + /g b +0 (@7D] (200)

where 0= 0/ >> 1. TFrom (200) we obtain by keeping the first two terms

in the expansion:

p~ (0f +8) P
. (201.a)

P LGoE + gl +of' +g'1p (201.B)

plif N [(g'f + 3)3 + (S’f + g) (;f' + g'y 4+ 2(0f + g) (cf' + B') + (201.c)

+ of'" +g''lp

Substituting (201) in (199) and collecting terms of 0(8‘3) we obtain:

: (202)

£ + csc?o £ =0
~ ‘0
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This gives

f=0o0or f=21 csc2 ¢° (203>

Collecting terms of 0(82) and substituting the non—trivial value of f we

obtain:

g =2 cot b, (204)

A n .2
Substituting (203) and (204) in (200), using ¢ = of » and d¢0/ds = Qo = Asin” o,

we obtaln

p¥O - sia® ¢ [A sin (08) + B cos (95)) (205)

whare A and B are constants. A boundary layer analysis of equation (192>
pear s = 0 and 5 = 1, leads to the conclusion that the full solution of

(192) can be approximately expressed as:

F
p(s) ~ A sin’ ¢, sin 0s + B sin? ¢, cos Os + (206)

Cexp (-€,) + D exp (-£,)

where £, and £, are given by (194) and C and D are constants. Using

(206), (191) and (197) we obtairn
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qF(s) ~ A {(o/)cos os + sin 2¢ cin os} + B {-(©@/A)sin s + C (207

sin 26 cos 05}-C o) HE A esct g, exp (B +
o] o} 1

/241

b ("an™ ese? o exp (£

In the application of (191) to determinme the exponential components of
qF, we used (197) rather than the true local value of Qg as this gave an
improved correlatrion with the numerical solution. Expressions (206) and
(207) define the fast varyling solution, where the four unknown constants A,
B, C and D will be determined from the boundary conditions.
Iv.2.1.2 Slowly Varying Solutioms

In order to derive the governing equations for slowly varyling

solutions, we use the following order of magnitude estimates, Triantafyllou

[34]:

p° =~ §p (Os)

qS+ 8§ (8s)

-~ {208)
T, > T. (&s)

o, + 8% 0, (69

- g3 o (8s)

To leading order equations (175) and (176) give, respectively.



(209)

T 2
Qo I, + 0 qg=0 (210>

Equations (179), (209) and (210) can be used to provide a single egquation

in terms of q {34, 35, 36]:
@S+ 0®E e - a6 il =0 (211)
0" 88 om o . 9 [a]

For large sag rods eom<<(92/0)2. For the riser described in Sectiom III.3,
we have e0m=0.3 x 10-4, V=1.29 m/s, R2~k~ 2.9 and therefore, the above
relation reduces to © << 535. For a strimgo-~nm, 0 = 1, 2, +ss and

therefore for low modes equation (211) reduces to
n _ 7% N2 g '
(a/9), - b~ 9,7 (a/8) = 0 (212)

Using 92 = ¢ o (166) with e = = 0, changing variables from s

to ¢O in equation (212) and integrating once we obtain:
' —
't (2] /aDp' - F°p =0 (213)

Using (197) for a neutrally buoyant riser in a strong constant (213)

reduces to the following equation, see [34]:

p'' - 2 cot ¢ p' - Re p=20 (214)

B L e ——————
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We will continue to use (214) as an approximation for a highly buoyant
riser in a strong current where *» in (197) is determined using the mean

value of the current., Once the solutiom of (214) is determined, we can

find q from

= p (215

Triantafyllou [34] provides the following approximate solution for p and q,

where the abbreviation h = EC iz used and h < 1:

5 . -+
p. = E Fl(s) + F Fz(s)
(216)
S
q° = EF.(s) + F F4(2)
F.(s) = [1+ il COSZ ¢ + 20 cos ¢ )1 cos ¢ (217
1 6 o 20 0 e
r(s) = 1-h% - B (b-1) cos? ¢+ h% {sin ¢ + /2 - ¢}
2 2 o sin ¢, + cos ¢, -6} (218)
. h-1
F3(s) = - sin ¢O {1+ 5 cos2 ¢O 1+ 2{% cos ¢O)} (219



Fé(s) = sin ¢, {h (h-1) cos ¢o_- h2 (v/2 - ¢O)}

In order to apply the boundary conditions we will need qz which 1s

equal

to:

qg(s) = E Fs(s) + F Fs(s)

where

Fy

Fe(s) = A sin2 ¢0 [hi(h-1) ces 2¢0 + h sig ¢0

+(5/24) (8-1) (3+h) cos” 6]

2

(s) = =X sin2 ¢o cos ¢O [2-h +¢(h-1) (5"h)/6)5052 ¢O +

(220)

(221)

(222)

~ hz(ﬂ/2 - ¢0) cos ¢O] (223)

For both the slow and the fast solutions, we use the following expression

for ¢O(s):

where

¢O(S) = Arc tan [-1/(ks + c)] + &

(224)
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g = {0 if "'(kS'l" C)
)

T if -(As +

(225)

The constants » and ¢ depend upon the static coordinates of the upper end.

Equations (224), (225) and a method to determine A and c can be found im

{10, 111.
Iv.2.1.3 Overall Solutions

Combining the fast and slowly varying solutions, we obtain the

following overall asymptotic solution:

p(s) = A sin’ ¢, sin Os + B sin’ 9, cos Os ¥ C exp (—El) +

D exp (-§,) + E Fy(s) + F F,(s)

a(s) = A{(c/})cos Os + sin 2¢0 gin os} + B{-(g/>) sin 0s +
sin 2¢, cos 0s} =C €102 27 cse? 9 exp ()

D (en(l))-llz 371 csc? 6, exp (-E,) +EF 4(s) + F F,(s)

In order to apply the boundary conditions:

P=9=9q " Qats=0,1

we need to also determine q_ *

ag = A 8(s) *+ B A (s + € €O AT esc? ¢ exp (£ +

-1 .-1
D (@)L AT csc? ¢, exp (-E,) + E Fy(s) + F F,(s)

(226}

(227)

(228)

(229)
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where

Al(s) = -(szl)sin os + 0 sin 2¢0 cos Os + 2A cos 2¢O sin Us sin2 ¢O (230

Az(s) = —(Uzlk)cos 0s - € sin 2¢_ sin Os + 2X cos 2¢0 cos Os sin2 o, (231)

Given that (228) are homogeneous, the 6 x 6 determinant det[Pij(o)] of

the coefficlents of A, B, ...F in (228) must vanish for non-trivial
solutions:

det [P, (_")] =0 (232}
The solutions o of (232) are our asymptotic estimates'of the
non-dimensional naturai frequencies. The determinant is calculated by
Crout's factorization method [37]. The solution of (232) is performed
using Powell's hybrid method [33]). Once o is determined, then the ratilos
B/A, C/A,... F/A can be determined by solving a 5 x 5 system of linear
equations. Crout's factorizatiom method [37] is used again. Subsequently,

we determine A by applying (169) in the present case:

1 2 12



96

where subscript 1 denotes the {th mode. All values A, B,...F are now
fixed and therefore p(s), q(s) and qs(s) can be evaluated from (226),
(227) and (229). The remaining dynamic variables are determined as
follows. The dynamic angle ¢,, can be determined analytically from
(180). Qg_and QE'are determined from (178) and (177) by numerical

1
differentiation. Unfortunately, equation (179) can not be used to

avaluate Tl’

{1l-conditioned. A well~-conditionmed metrhod to determine Tl’ is through

because the operatlon (Ps - ﬂgq)/eom is

the force equilibrium equations (175) and (176). We integrate (175) from

1/2 to s and get:

_ rB N n & - 2 =T v {234)
Tl(s) - T, (1/2) = IUZ [Q; & + Qo Q+F, ¢, - 9 | h” p) ds
The constant Tl(l/2) can be evaluated from (176):
o _ el (568 n 2
Tl(l/Z) =- Q) " [e * R+ F o o0 ql (235)

where the right hand side of (235) is evaluated at s = 1/2.
1V.2.2 Initial Numerical Approximation

As explained in Section IV.2, the asymptotic approximations used
there are not valid for zero or very small currents for a typical buoyant

compliant riser. In such cases the linear boundary value problem (162)
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to {167) under

p(0) = q(0) = 9,(0) = ¢,(1) = 0 (236)

P(L) = a(l-€); q(1) = b(1 ~ €) (237

1/2

1s gsolved for €= 0 and a serles of values of 0 = A cloge to the .
expected natural frequencies. Approximate order of magnltude estimates
of the patural frequencies of highly buoyant compliant risers for zero or
very small currents can be obtrained by idealizing the riser as a string.
For each value of O chosen, the above linear forced undamped problem can
be solved for € = 0 using & non—~uniform grid finite difference method,
Pereyra [29]. Each of these solutions can be a starting point for an
embedding technique involving equations (162) to {(167) and (172) with
boundary conditions (236), (237) and (173). The resulting non-linear
problem at each step e-skh is solved by the method outlined in Section
III.1, see also Pereyra [29]. The above solution method can be also
applied in the case of a strong current with no modification., The final
pumerical results for € = 1 obtained using the methods of Sections Iv.2.,1

and IV.2.2 should, of course, be the same. This has also been verified

as an additional check of ocur computer programs.
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IV.3 NUMERICAL RESULTS FOR A BUOYANT COMPLIANT RISER
In this Section we present results for the in-plane dynamics of the

compliant riser and the static boundary condirions described im Sectlon

III1.3 and for the following three static excitation conditions:
1. Constant current equal to 1.29 m/s.

2. Linear curreat with V_(0) = 1.03 m/s and vx(hw)- 1.55 m/s.

3. Zero current,
The static solutions for Cases 2 and 3 can be found in [11). The static

solution for Case 1 is very close to the solutiom for Case 2. The maximum

effective temsion for the above three cases is equal to 7.828 kN, 7.973 kN

and 0.,143kN, respectively. For Case 2, the non—dimensional parameters given

in Section IIT.3 remain the same., The above parameters for Case 1 are very

close to those of Case 2. For Case 3, the values of the non—dimensional

parameters are:

- 0.52 % 10°%;

eP = 0.53 to 1.06 (at the ends):

e = 1.1 x107% to 2.2 x 1072 (at the ends);

) -
to 0.6 x 10 2 {(at the ends};

e = 0.3 % 10
v = (.15

T = 85.04 v, where p is in rad/s;

K, = 0.0694 ¢ , where ¢ is in m/s.



99

Case 1: Table 2 shows our results for the first two in-plane natural
frequencies for Case 1. Columns 2 and 3 ghow the initial asymptotic
estimates and the final converged values from the embedding technique,
respectively. The error 1s less than 2.8%, which indicates the accuracy
and usefulness of the asymptotic approzimation of Sectiom IV.2.1 and the
quality of the embedding choices in Sectlon Iv.l.

Similar comments can be made for the comparison of the natural modes
obtained through the asymptotic technique of Sectlon iv.2.1 and the final
converged values obtained through the first embedding technique of
Section IV.l. Figures IV.l to IV.3 and IV.4 to IV.6 show our results for
the first mode obtained using the asymptotic and the embedding
techniques, respectively, Figures IV.1l and IV.4 show p and gq; Flgures
IV.2 and IV.5 show T, and 9); and Figures IV.3 and IV.6 show 6
and Q%. The solid and dashed lines correspond to the lower and upper
axes, respectively. The values plotted are orthonormalized as described
in Section IV.1l. Figures IV.7 and IV.9 and IV.10 to IV.12 show the
corresponding results for the second mode obtained using the asymptotic

and embedding techniques, respectively.

TABLE 2: IN-PLANE NATURAL CIRCULAR FREQUENCIES (in rad/s) FOR CASE 1

Mode No. Initial Estimate Final Numerical Error = (Ey-Ef)/Ei * 100
(Ey) Value (Ef)

1l 0.469 0.456 2.8

2 0.774 0.770 0.5
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Case 2: Table 3 shows our results for the first five in-plane patural

frequencies for Case 2. Columms 2 and 3 of Table 3 show the initrial

asymptotic estimates and the final copverged numerical values from the first

exbedding téchnique, respectively. The error is less than 4.2%7, which

indlcates the accuracy of the analytical solutions of Section IV.2.1 and the

quality of the embedding choices in Section IV.l., The slight differemce of
columns 2 of Table 2 and 3 is due to the difference of the maximum static

effective temsion. The comparison of the natural modes obtained using the

asymptotic and the first embedding technique 1s very good.

TABLE 3: IN-PLANE NATURAL CIRCULAR FREQUENCIES (in rad/s} FOR CASE 2

Final Numerical E, - E
Mode No. Initial Estimate (Ei) Value (Ef) Error=—&-—§:—£ x 100
1 0.473 0.453 ' 4.2
2 0.781 0.767 1.8
3 1.084 1.061 2.1
4 1.370 1.354 1.2
5 1.661 1.618 2.6
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Figures IV.13, Iv.15, IV.1l7, IV.19, IV.21l and Figures IV.14, IV.16, IV.18,
Iv.20, IV.22 show our results for p and q for the first five modes obtained
using the asymptotic and the embedding techniques, respectively. In additioen,
Figures IV.23 to IV.32 show the numerical results obtained from the embedding
technique for the first five modes and for Tl’ Q?, ¢l, QE. The solid and
dashed lines always correspond to the lower and upper axes, respectively. The
values plotted are orthonormalized as described in Sectionm IV.1. As in

Section III.3, we estimated that

A, - 6,..] <0.72 x 1072
1] —

ij
where

1.z £
A, =/ + g ds
ij oG Py Py TR .j)
Finally, the resulrs for the first two cases and modes are very close which

indicates that the current variation does not have a pronounced effect on the

Tresponse.

Case 3: Figures IV.33 to IV.38 show our results for the first three in-plane

modes in the absence of current obtained using the initial approximation of

Section IV.2.2 and the second embedding technique of Section IV.l. Flgures
IV.33, IV.35, IV.37 show p and q; Figures IV.34, Iv.36, IV.38 show Tl and

§ 2 for the first three modes, respectively. The solid and dashed lines

correspond to the lower and upper axes, respectively, For Case 3 we estimated

that

To compare our results for in-and out-of-plane natural frequencies

obtained from our embedding techniques with a corresponding string, we relate
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the w's (in rad/s) with non-dimensional frequencies defined by

* ’ -
$* - wL(mT/T'om)l/z (238)
where for in-plane dynamics ET = E% and for out-of-plane dynamics ET -
-1 ,
B and Tom is the maximum dimensional value of the static effective

tension for each case. Table 4 shows our results for Z*/m. In order to

establish a correspondence between the modes ip Table 4, we use the number of
half wave lengths of q or r and the approximate symmetry/anti-symmetry with

respect to the middle.

TABLE 4: L*/m; S = Symmetric; A.S.: Anti-symmetTic

Qut=-of-Plane In-Plane
Approximate String Case 1 Case 2 Case 1 Case 2 Case 3!
Character Linear Zero Constant Linear Zero
Current Current Current Current Current
S 1 1.010 1.272 DOES NOT DOES NOT DOES NOT
EXIST EXIST EXIST
A.S. 2 2.047 2.474 1.669 1.642 1.056
s 3 3.048 2.817 2,781 2.139
A.S 4 4,127 3.847 3.519
S 5 5,212 4,919

A.B 6 5.866
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Table 4 illustrates the following results:

1.

The out—-of-plane natural frequencles of a buoyant compliant riser in a
strong current are only slightly higher than the corresponding
frequencies for a string, because of small bending effects. For the
case of zero current, the effects of the form of the static
configuration are pronounced leading to an increase of the first two
natural frequencies by 27.2 and 23.7% with respect to the

corresponding frequencieé of a string.

The in—flane natural frequencies are substanrially modified with
respect to a corresponding string. For the case of a stromg current,
Table 4 shows that the first symmetric mode in q corresponds to a
frequency which is siightly less than the frequency of the second
symmetric mode in q for & string. That is, the first symmetric
natural frequency for the strong constant and linear current is 182%
and 178% higher than the first natural frequemcy for a string and the
corresponding modes resemble to the 3rd mode of a atring. A similar
phenomenon occurs in small sag chain, where the corresponding number
1s 186%, see [35]. This occurs because geometric compatibility
significantly affects modal shapes for nearly inextensible rods [35].
For the case of a strong constant and linear current, Table 4 shows
that the first anti-symmetric mode has a frequency which is lower by
177 and 18% than the corresponding string frequency, respectively.
This difference rapidly descreases with increasing anti-symmetric mode.

For the case of zero current and for in-plane response, we could not
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jocate a natural frequency less than 1,056 in Table & and therefore
judging from the mode shapes we assoclated rhe Case 3 frequencies as shown
{n Table 4. The mode shapes are nelther close to symmetric or
anti-symmetric shapes aund are therefore called hybrid modes. The natural
frequency corresponding to tﬁe first hybrid mode is 47% less than the
frequency corresponding to the first anti-symmetric mode of a gtring and
to the second hybrid mode 1s 297 less than the frequency corresponding to
the second symmetric mode of the string.

In addition, to the numerical values of the natural frequencies which
are well within the wave and vortex frequency spectra, the other
interesting result from the Figures for Cases 1 and 2 for the in-plane
response is the shape of the absolute values of the dymamic curvature QE
and dynamic temsion T, vhich indicate a sharp increase near the ends.
These two quantities are likely to be important parameters in the
determination of the performance of the system in the noo-linear dynami&
regime. The simulraneous rise of Tl and 9; near the ends can be

explained by integrating (162) where Qf and QE are eliminated using

(164) ad Q5 = - (" A),.

For Case 3 and at least for the low modes examined, the more lmportant
parameter seems to be the dynamic tension, T,, when compared to Cases 1
and 2. Large absolute value of dynamic tension T,, coupled with
negative or very small positive To’ needs to be given proper atteantion

because it may affect the integrity and safety of the system.



0. S

0

-2

MODE NUMBER=|
NAT. FREQOUENCY=0.4838 RAD/S

Figure IV.1: Asymptotic p,q for
Case 1 and Mode 1

OMEGA ETA!
-2500 0 2500

wn0. S

0

-30 0 30

MODE NUMBER=]
NAT. FREOUENCY=0.488 RAD/S

Figure IV.2: Asymptotic T], R? for Case 1
and Mode )




106

g XlI
~25 0] 25
‘ (
|
|
wnl. S 1
1
0 !
-30 0 30
PHI1!
MODE NUMBER=1 '
NAT. FREQUENCY=0. 488 RAD/S

Figure IV.3: Asymptotic ¢ Q% for Case )
and Mode 1

-2 2
! -~
-~
/
/
\
\
\‘-
wni. S
4]
-2 2
MDDE NUMBER=!
NAT. FREQUENCY=0.45€ RAD/S

Figure IV.4: Numerical p,g for
Case 1 and Mede }



107

OMEGA ETAL
-2500 0 2500
1 ,
|
‘ .
-
|
wnC. S
!
l
|
|
0 A
-30 0 30
T1
MODE NUMBER=1
NAT. FRECUENCY=0.458 RAD/S

Figure IV.5: Numerical T,, Q? for Case 1
and Mode 1

wn0. 5t
|
0 !
-30 0 30
PHII
MODE NUMBER=!

NAT. FREQUENCY=0.458 RAD/S

Figure IV.6: Numerical ¢], Q% for Case 1
and Mode 1




MODE NUMBER=2
NAT. FREGUENCY=0.774 RAD/S

Figure IV.7: Asymptotic p,q for
Lase 1 and Mode 2

OMEGA ETA!
-2500 0 2500

! ’

wn0. S5 ]

C

-30 0 30
T
MODE NUMBER=2
NAT. FREOQUENCY=0.774 RAD/S

Figure IV.8: Asymptotic TT’ ﬁ? for Case 1
and Mode 2



C Xl
-25 0 25
} —
|
wnl. 5
l
l
l
o =~
-30 0 30
PHII
MODE NUMBER=g
NAT. FREQUENCY=0.774 RAD/S

Figure IV.9: Asymptotic 1> O% for Case 1
and Mode 2

-2 2
1
nl. S5
c
~2 2
MDDE NUMBER=2
NAT. FREQUENCY=0.770 RAD/S

Figure IV.10: Numerical p,q for
561" and Mode 2




110

OMEGA ETAL
-2500 0 2500
i
|
l
\
0. S |
/
|
\
0 hS
-30 0 30
T4
MODE NUMBER=2
NAT. FREQUENCY=0.770 RAD/S

Figure IV.11: Numerical T1,Q? for Case 1
and Mode ¢

~-25 25
1
wnl0. S5
8]
-30 S0
PHI!
MODE NUMBER=Z
NAT. FREQUENCY=0.770 RAD/S

Figure IV.12: Numerical qs Q% for Case 1
and Mode 2



-2 2
! -
o
/
/
\
\\
wn0. 5t i
0
-2 4

MODE NUMBER=|
NAT. FREOUENCY=Q., 473 RAD/S

Figure IV.13: Asymptotic p,q for
Case 2 and Mode 1

-2 2
1
-
P
g
RO {
N
~
wnl. S
8
-2 2
MODE NUMBER=1

NAT. FREQUENCY=0.453 RAD/S

Figure IV.14: Numerical p,g for
Case 2 and Mode 1




112

wn0. S

0

-2

MODE NUMBER=2
NAT. FREGUENCY=0.781 RAD/S

Figure IV.15: Asymptotic p.q for
fase 2 and Mode 2

-2
1
el
0. S ~
]
-2

MODE NUMBER=2
NAT. FREGUENCY=0,7867 RADB/S

Figure IV.16&: i
Cgse 2 and Modguger1ca1 P.q for



113

UJO- 5- p——

MODE NUMBER=3

NAT. FREQUENCY=1.084 RAD/S

Figure IV.17: Asymptotic p,q for
Case 2 and Mode 3

-2
!  —
,
t"'llln..
- —
wnl. Sp- .
-
\‘___-- _
0
-2
MUDE NUMBER=3
NAT. FREQUENCY=1.06! RAD/S

Fegger‘eZIgﬁ;%odgu?erical p,q for



. 114

wnl. S

0

-2

MODE NUMBER=4
NAT. FREGUENCY=!.37C RAD/S

Figure IV.19: Asymptotic p,q for
Case 2 and Mode 4

wnC. St~

MODE NUMBER=4
NAT. FREQUENCY=1.354 RAD/S

Figure IV.20: Numerical p,q for
Case 2 and Mode 4




115

nC. 3

8]

NAT.

-2

MODE NUMBER=S
FREQUENCY=1.8681 RAD/S

Figure IV.

21: Asymptotic p,q for

Case 2 and Mode 5

-2
}
<77
nC. 5 -
Ll
'\.__--
O — .,
-2
MODE NUMBER=D
NAT. FREQUENCY=1.8618 RAD/S

Figure IV.22: Numerical p.,q for
Case 2 and Mode 5




116

OMEGA ETAL
-2500 0 2500
]
|
I
!
]
wi. S-
i
|
|
{
0 ,
~-30 , 0 30
T
MODE NUMBER=!
NAT. FRECUENCY=0.453 RAD/S

Figure IV.23: Numerical T, Q? for Case 2
and Mode 1

g XI
-2% Q- 25
! {
|
|
|
mo. 5"' I
|
|
0 ?
-30 0 30
PHIT
MDDE NUMBER=|
NAT. FREQUENCY=0.453 RAD/S

%%r%olve 24: Numerical ¢ys Q% for Case 2



117

| OMEGA ETAl
2500 O 2500

1

wn0. S

30

© MODE NUMBER=2
NAT. FREGQUENCY=0.767 RAD/S

Figure IV.25: Numerical Ty, n’; for Case 2
and Mode 2

-25 25
1
0. S
0
-30 30
PH11
MDDE NUMBER=2
NAT. FREQUENCY=0.787 RAD/S

Figure IV.26: Numerical LI Q% for Case 2
and Mode 2



118

OMEGA ETAI
-2500 0 2500

|

30

MDDE NUMBER=3 .
NAT. FREQUENCY=1.06! RAD/S

Figure IV.27: Numerical TT, Q? for
Case 7 and Mode 3

-25
1
n0. S
G : .
- =30 0 30
PHI
MODE NUMBER=3
NAT. FREQUENCY=1.081 RAD/S

Figure 1V.28: Numerical ¢1,Q% for Case 2
and Mode 3



118

GMEGA ETA1
-2500 0 2500

1

wnl. 3

30

MDDE NUMBER=4
NAT. FREQUENCY=1.354 RAD/S

Figure IV.29: Numerical T1, n? for Case 2
and Mode 4

lmO.S—

0

-30 0 30
_ PHIt

MDDE NUMBER=4

NAT. FREGUENCY=!.354 RAD/S

" Figure IV.30: Numerical 1 O% for Case 2
and Mode 4



120

OMEGA ETAL _
-2500 0 2500

1

n0. 9

30

MODE NUMBER=D
NAT. FREQUENCY=!.8618 RAD/S

Fiqure IV.31: Numerical Ty, Q? for
Case 2 and Mode 5

'
N

un

-0 g
)
L4

mO.5-<::ﬂﬂ‘#“—;_ﬂ___ﬂ_::>
\

PHII

MODE NUMBER=S
NAT. FREOUENCY=1.818 RAD/S

Figure Tv.32: MNumerical ¢, ¢} for Case 2
and Mode 5



121

nl. 5+ _ ”

&)

-2 C 2

MODE NUMBER=|
NAT. FREOUENCY=0.038 RAD/S

Figure IV,33: Numerical p,q for
Case 3 and Mode 1

OMEGA ETA!
-23500 0 2500
1 .
nGC. S
I
© |
~-30 0 S0
T1
MDDE NUMBER=|
NAT. FREQUENCY=0,039 RAD/S

Figure IV.34: Numerical T,, & for
Case 3 and Mode 1



n0. S~

MDDE NUMBER=2
NAT. FREOUENCY=0.078 RAD/S

Figure IV.35: Numerical p,q for
Case 3 and Mode 2

OMEGA ETAI
-2500 0 2500
L ]
[
]
|
U)O. o] od \\
/
0 .
=30 0 30

T

MODE NUMBER=2
NAT., FREQUENCY=0.079 RADB/S

Figure IV.36: Numerical Ty, h? for Case 3
and Mode 2



UJQ- 5-

MODE NUMBER=3
NAT. FREQUENCY=0. 130 RAD/S

Figure IV.37: Numerical p,q for

Case 3 and Mode 3

-2500

CMEGA ETAI
c

2500

1

wnC. 3

0

/
/
I
\
\
/
/
{
N

N
7

-

-30

0
T

MODE NUMBER=3
NAT, FREQUENCY=0. 130 RAD/S

30

Figure IvV.38: Numerical T,. Q? for Case 3

and Mode 3




CHAPTER V
THREE DIMENSIONAL LINEAR EIGENPROBLEM FOR

A THREE DIMENSIONAL STATIC CONFIGURATION WITH TORS ION

The governing non-dimemsional differential equatioms (97) to (108)

simplified using arguments similar to those presented in Secrion II.4 are:
-

- -
1., Force Equilibrium in the -co, Eo and n, directions

T =gbon PR B N 2
1s ~ Yy T Q0 - QR - R0 Q) FEy By T Fy By -2 B°p (239)
E N T N n_ &N _ J_25 (2460)
le - Qo Qi * Q0 Ql To Ql S-20 Tl Fl B12 + F3 B23 b7 q
no. £ . & N N
Qe = To W #8951 - Q3 8] -2 Q] ~F) B4 - F, By - e (260

2. Moment Equilibrium around the E’ ’ é:) and r'f; directions
&}
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P b --ePaba et @A+l dd - anp? ey, (262)

RN 2 E o8 n n P n A7 A 4
‘Z lez-as 91+Q1+(a -£7) (520 szl+§zo Ql>+M'HoSlZ (243)
(244)

. £ g z
gl g”s AL v QE + (P - eg) (QE @+ QE Q) + Mpg B13

The compatibility relatioms (103} to (105), the relatiomns between

Bl? 813 and 823 and the components of 51, (106) to (108) and the form of
boundary conditions (85) remain unchanged.
In Appendix D of this work, we write these governing equations in

terms of the basic variables, p, q, r and B= &,; and prove the

following orthogonality condition which the natural modes need obey:

n -2 - {
+hioTor, v AL B Bjj ds = 0 for 1 ¢ 3 (245

1 ..z €
fo W7 Py Py ¥ BT ay gy 1%y

where subscripts 1 and j denote two different natural modes. As we did

in previous Sections, we also chose the following orthonormalization
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condition:

1 3 ey -2 =5,
Is [h; p. D + h qi qj + h Ii I'j + AT 8:1 Bj] ds :'J . (246)

C i3

where Gij ig Kronecker's delra.
Chapter

The solution of the gemeral eigenproblem formulated in this

1s subject of further research.
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CHAPTER VI

CONCLUSIONS

The first few natural frequemcies of the compliant riser analyzed in this
work are well within the expected wave and vortex frequency spectra and
therefore non-linear dynamic effects need to be ineluded in the design
process. In the presence of stroug external currents, the values of QE,

§i E,S?E'and Tl rise sharply pear the ends which suggests a weakness of
compliant risers at these polnts. A non-linear dynamic analysis 1s, of
course, necessary to compute the actual magnitudes of Qf, 92 and Ty for

a particular externsl excltation. For the case of zero or very small
currents, the more important parameter seems to be the dynamic affective
tension. Large absolute values of dynamic effective temsion coupled with
negative or very small positive values of static effective tension need to be
given proper atteation because they may effect the integrity of the system.

The patural modes of the system form & complete set of functions and
therefore can be employed ia the solution of the noﬁ—linear problem through a
spectral expansion. For bandlimited excitations, we expect that only a small
aumber of modes 1s needed in practice. This r;duces the computational effort
and provides the means for an efficient solution of the non~linear problem
through the lipear solutions derived im this work. This solution method has
been successfully employed in [35] for cable dynamics due to imposed motion at

the upper end and in [24, 25} for tensioned marinme riser dymamics due to

vortex excitatiom.
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A.l
APPENDIX A
INTERNAL FLOW EFFECTS
A simplified mathematical model which allows us to examine the
effects of the Coriolis terms on the natural frequencies and modes of

compliant risers is:

, 2
- 2 K = Aol
9g io K q_ +0%°% =0 (A.1)

which results from equation (124) 1f shear, static friction and dynamic
tension terms are neglected for a small sag neutrally buoyant compliant
riger in a current. The boundary conditions necessary for the solution

of equation (A.l) are:

q(0) =gq(1) (A.2)

[}
o

By assuming solutions of the form q-eas, we obtain the characteristic

equation:

32 - 240 Ki o + 02 - 0 (a.3)
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or

a, =10 [Ki + V1 + KE] (A.4)

Applying the boundary condition q(0) = 0, we find that

q(s) = A {exp [i0 ¢ s] - exp [10c_ s}} _ (A.5)

where

=K + V1 + K ' (A.6)

Applying q(1) = 0 we find that

exp [2ic V1 + Ki] =1

or equivalently

cos{20 ¥1 + Ki) =1 and sin (20 M1 + Ki) =0
For nontrivial q(s), these relations lead to

20 V1 + K2 = 2n7 n =1, 2 coavns
n i
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Therefore the string natural frequencles, o, n7, become

0. =n7w (1+K12)-l/2

n (Ao?)

due to Coriolis effects from the internal flow. For Ky << 1, the
resulting change is very small. The natural modes also change from

standing waves of the form

sin (nms) cos (nrwt)

to travelling waves of the form

ar (¥ s)

sin (R7Ts) co_s[T—i-—-' S |
1 +.Ki

where t is the non-dimensional time. The resulting change is, of course,
very small when k i << 1. No instabilities occur with this model because
the effact of the centrifugal and internal overpressure force terms due
to the internmal flow on a statically deflected compliant riser is to
increase the statlc tension in the riser material in such a manmer that
the static effective tension remaine constant, see (9, 10, 11)]. In the
case of the simplified model (A.l), the static effective tension is equal
to 1 (i.e. the coefficient of q__). A similar couclusion was drawn by
Hill and Davis [18] for the related problem of linear dynamics of c¢lamped
planar naturally curved tubes of constant initial curvature due to a

steady internal flow with overpressure.
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APPENDIX B

QUT-OF-PLANE LINEAR EIGENPROBLEM
B.1 GOVERNING EQUATIONS IN TERMS OF wl’ AND r.
In this Section we rewrite equations (129) to (134) in terms of the
basic variables ¢1 and r. For simplicity of the derivation, we neglect
the static strain e in equation (134) because e, << 1 and we do not

expect a significant effect from this parameter on the response.

Therefore equation (134) gives

8 = =T (Bol)

Equations (132), (133) and (B.l) give

E . n
Q1 Tas T 9, L (B.2)
o n

Q=¥ * Q, rg (8.3)
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Equations (131), (B.2) and (B.3) give:

Q? - [Eg(gg wl - rss)]s + (P - eh) Q: (wls * 92 Tg) (B-4)

Equations (130), (B.2) and (B.3) give:

Py, + el + @ =B @ @y - r )+ EApTY =0 @)

-

Equations (129) and (B.1l) to (B.4) give:

E o 4 PN AN 4 n )
[e (QO by - rssl]ss + [(eF - €7) 90 (¢15_+ Qo rb)]s-- (B.6)

N - & n 2.n_
TO(Q0 wl rss) + QO (wls + Qo rs) + Fl r + szl +Z" h' r=24
Equations (B.5) and (B.6) form a set of coupled linear differential
equations in terms of ¥;, and r. The associated boundary conditions

are obtained from (135) amd (B.l):

Yy =mr=r_=0 at s = 0, 1 (8.7)
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B.2 ORTHOGONALITY CONDITIONS FOR THE SOLUTIONS OF (B.5) TO (B.7)

The development of these orthogonality conditions uses the method of
influence functions used by Rosenthal [38] and Bliek [35] for a similar
problem in cable dynamics. A one—dimensional version of the method of
influence functions can be found in den Hartog [39], p. 160.

Let H(s,sl) denote the influence 2 x 2 matrix for our case, defined by:

a(s) = H{s, s;) 3 (s) (B.8)

wherg

iUs) = Wy (o), ¥ (8.9)

i5 the vector of generalized static deformations at point s {around the E;

and in the Eol directions) due to a generalized static unit load at point 8,

F-4

Fep) = [£5Gsp), £ (s (8.10)

i.e. unit moment around E; and unit force in the ﬁo directions.

Assuming that the system oscillates sinusoidally in 1ts ith mode ;i(S)
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with frequency Zi and using the (maximum) inertial moment(Zi/)\T)zlpli and
force Zihi}ri in equations (B.5) and (B.6) as generalized static loads
distributed along 0 <s; < 1, we obtain by using (8.8) and linear

superposition (valid because of the linearity of (B.5) and (8.6)):

[

> 1 2 _ -
a,(s) = JyB(s,8) L, I(s9) - a (s)) ds (B,11)
where I(s;) is a generalized 2 x 2 mass matrix defined by
-2
An (s.)

and obviously satisfying

L
I(sl) = I\(sl) (B.13)
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For elastic systems obeying a generalized Hooke's law, the reciprocity

-

relarions

R (s, 8;) = H(sy, 8) (B.14)

can be derived generally, see for example Timoshemko and Goodier [40],
pp. 271-273 or den Hartog [41] pp. 226-227. These relations are usually
referred to as Maxwell's reciprocity relations.

Multiplying (B.11l) by 2?(3).1(3) and integrating over the length we obtain

RO O RO R EE | (3.15)

2 .1 1 -+T -
= Ei IO ds IO ds1 aj(s) . I(s) . H(s, sl) * I(sp) ai(sl)

By reversing the role of 1 and j in (B.13) we obtain

12T, .
R HORBIOIFRORIE (.16)
2 1 1 2T '
- Ii Sy ds Sy ds E0e) - I(e) L EGs, sp) L T(s)) SANCH
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We apply the operation transpose ( )T to both sides of (B.15). Using
(AB)T = BIAT , Strang [42], where A and B are matrices, (B.13) and

(B.14), we find that:

f](;;:(g)_. I(s) . gj(s) ds =

+
2 1.1 . >
= I . : . e
i Fods /5 ds, a;{(s) I(s) H(s, sl) I(sy) aj (s) (8.17)
where an interchange of the dummy integration variables in the right hand side

of (B.17) has been performed. Substracting (B.16) and (B.17) we obtain

2

0= (13 - I

) - Q

where Q denotes the double integral in the right hand side of (B.16) or
(B.17). Therefore when Zi # Ej we obtain Q = 0 and therefore from either

(B.16) or (B.17) we find

Lals) * (e dds=0 (B.18)
Due to (B.9) and (B.12) equation (B,18) can be written as
* [A;Z' by by W' r r]ds=0forI #E (8.19)

0 3 3

which is the orthogonality condition between the modes of the system, i.e. the

solutions of equations (B.5) to (B.7).
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APPENDIX C

IN-PLANE LINEAR EIGENPROBLEM
C.1  GOVERNING EQUATIONS IN TERMS OF p AND q.
In this Section we rewrite equations (162) to (167) in terms of the basic

variables p and q. For simplicity of the derivation, we neglect the static

strain e  in equation (167) because e, << 1 and we do not expect a
significant effect from this parameter on the respounse. Therefore equation

(167) gives

¢l =q_+ 92 P (C.1)

Equation (166) gives:

h- (ps - 92 q)/eom ' (C.2)

Equations (164), (165) and (C.1l) give

n_ n
91 = (qs + QO p)S (CQ3)
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E _ n n (C.4)

Q =~ [ (a  + 8 )1
Using (C.1) to (C.4), equations (162) and (163) gives:
_aon _ a8 n n N n

[(pg - &, q)/eom]S Q la_+ 0 pl +0a [e(q + Pl

-~ F,(q + szg P) + 0% h%p =0 (c.5)
-tN n

‘ [e" (qg+ QP J - +T [a, + 92 pl  + 92 ®, - 92 a)le
2 . £ (C.6)

N
+
Fl(q3+nop)+a h? g=20

Equations (C.5) and (C.6) form a set of coupled linear differential

equations in terms of p and q. The associated boundary conditions can be

obtained from (168) and (C.1l):

(¢.7)

p=q=9q,=0 ats=0,1
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when the riser is modelled as a strictly inextensible body, 1.e. in the

1imit BA—~0 or e , e~ 0, the governing equations can be expressed only

0? Tom

in terms of the tangential displacement p. In this case the first

compatibllity relation (166) gives

Qg = p (c.8)
0 5
Noting that for a two-dimensional static configuration
\LE-
Qo ¢os (C.9)
we may replace (C.8) by
| B )
P =q (C.10)

where (  )' = d ( )/d¢°-- Using equations (C.9), (C.10) and (167), we

obtain for an inextensible rod
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Similarly equation (165) gilves

n_ N a" ny1s (C.12)
Ql Qo [Q0 (p+p"]
Using equation (C.12) and (164) we obtain
£ - b n &N n My 111y (C.13)
Q = - 4, {e 8, 19, (e +pM1'}
Solving (163) for T,, using (€.9) to (c.13), (113) and
E o _ al¢el oy
Qo no(e RQ)
we obtain
- n n A0 T " n "
T, = {2 {e Q, (8, (e+pM]'}} - T, [y (@ +pM]' C.14)

o 1+ 0 " AT o+ ™ - oF @A) p?

In order for Tl to remain finite at points where 92 = (0, we conclude that
q=p'= 0 at these points. We may now substitute equation (C.11) to (C.14) in

equation (162) to obtain a sixth order differential equation for p:

{92 [Sn ‘Qg {Qg (p + pll’)}!]l]ll +‘ Qg {ETI 92 {Qg (p + pn)]t}t

: - (C.15)
-{1, 92 (e +p"}" =T Qg (p+p™M = oz‘KiﬁfLo - gﬁﬂ}

o}

o]
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The siz boundary conditions associated with (C.15) can be obtained from

(C.7) and (C.10)

(C.16)

where QZ_% 0 at 8 = 0,1 has been assumed.

Equat;on (C.15 ) can be found in Bliek [35] for the special case of an
inextensible cable {l.e. a rod with gl = 0) under weight forces only.
C.2 ORTHOGONALITY CONDITIONS FOR THE SOLUTIONS OF (C.5) to (C.7)

Following the arguments given in Section B.2, the orthogonality condition

for the solutions of (C.5) to (C.7) can be written as:

ft [hc Py Py + hE 4y qj] ds = Q for o4 # o4 (c.17)

For the case of cables, equation (C.17) can be found in Bliek [35].
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C.3 ORTHOGONALITY CONDITIONS FOR THE SOLUTIONS OF (C.15) TO (C.16) .

Por the case of strictly inextensible risers, equations(C.l15) to (C.16)
can be employed directly in the derivation of the orthogonality condition.
Applying (C.15) for mode p; with eigenvalue oy » multiplying by py,

integrating over ¢Bb to ¢To and performing integration by parts we obtain

Eib'I.‘

I%Z e e.n 92 [92 (py + "]’ [92 (py + Pj'-)]t +

f¢‘]’_‘0 d T Qn . " " " ' (Colﬂ)
¢Bo ¢o o0 (Pi Pj + Pj Py + Py pj + Py pj') -
62 f¢TO 6 [hg , 'y hC . .

17y, © B .BP P 1/ )

where the boundary conditions (C.16) have been used. We may now replace i by
j and vice versa in equation (C.18) and subtract the regsulting equation from
(C.18). We also notice the invariance of the integrals on both sides of

(C.18) when we replace i by j and vice versa. This given:

2

A |
0= @2 - oy 170 o ¢yt oyt + 00 py B/

8o

and therefore when 011&0. we obtain
]
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J'Jé [hc Py Pyt hE Qg qj] ds =0 | (C.19)

where (C.9) and (C.Ll0) were ﬁsed. Relation (C.19) is identical to (C.17).
Derivation of equation (C.19) can be found in Bliek {35] for the specilal case
of an inextensible cable (i.e. a rod with el = 0) under weight forces only.
C.4 ASYMPTOTIC SOLUTION OF EQUATIONS (C.15) TO (C.16)

C.4.1 Asymptotic Solution for ET!- 0, h€==1 and a Neutrally Buoyant Rod in

a Uniform Current

In this case (C.15) and (C.16) simplify to

1, ng (p+p™MI" + T ng (p +p") + a2 {02%) - iﬁ-} =0 (C.20)
8] o]

p=p' =0 at s =0, 1 {C.21)
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where h = o= constant was assumed for simplicity.

In the case of a neutrally buoyant compliant riser in a uniform current:

n_ 2
Qo A 8in® ¢, (C.22)

- % C.23
A = 0.5p D* LCy v|v|/'rom ( )

and

where Tom'is the (constant) dimensional effective temsion. Equation (C.20)

reduces to the following equation in this case:

— -—2 .0 (C.20)

2
sin ¢° sin ¢°

[sin? ¢, (p +p"™1" + sin’ ¢, (0 + ") + ¥ [(
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where

k = ofx (C.25)

The solution for k¥ >> 1 is obtained by using a WKB expansion of the form:

p~exp [kJ£dg +/gdo, + OKD)I (G.26)

Evaluating the derivatives of (C.26), substituting in (C.24) and ordering

in powers of k, we obtain from the terms of 0(k4):

2 .
1
£a (210se & (c.27)
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The presence of £ = 0 above indicates that there are solutions of (C.24)
which are not of the form (C.26). These are slowly varying solutions as k>

and are obtained separately. For the first solution, £ = i.icsc2 ¢°, and

from the terms of O(ks) we obtains:

g = 2 cot ¢0 (C.28)
The corresponding expression for p is:
P ~ sin2 ¢0 [A sin Us + B cos Os] (C.29)

whlch is the "fast" solution as o>>1.

The slow solution p 18 obtained from (C.24) by letting k + in such a

manner that

& [(—g-'——)' - 22— ] = o) (C.30)
sin ¢o sin ¢0
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This gives

p" - 2 cot % p' —hp = 0(k72) (c.31)

Equations (C.29) and (C.31) are identical to (205) and (214) obtained through

a different method. The solution of (C.31) obtained by Triantafylliou [34] 1is

glven by (216).
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APPENDIX D

THREE DIMENSIONAL LINEAR EIGENPROBLEM

D.1 GOVERNING EQUATIONS IN TERMS OF p, q, T and 8.

In this Section we rewrite equations (V.l) to (V.6) and (103) to (108) in
terms of the basic variables p, q, r and B = 823 . The first three represent
3> -
linear displacements along ;0, E; and T while B = 323 represents

dynamic torsion and is equal to the directiom cosine of E. with respect

to ﬁ . For simplicity of the derivation, we neglect the gtatic straln

0
e, in equations (104) and (105) because e, <<1 and we do not expect a

significant effect from this parameter on the response.

Therefore, the compatibiliry relations (103) to (105) give:
T, = (o + 2 -9 Qe (0.1)
1 s 0 ) on '

B, ™ Oy + 92 » - ﬂg r (D.2)

R (D.3)
B13 Ts + Qo d Qo P
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Relations (106) to (108) give:

£ 1
Qs = B, + 85 By * & By , (D.4)
Fa-p. +hp-"8
1 "138 0 - ¥ 12 (D.5)
n = b C - E | Doﬁ»
M=, - g, -8 , | (0.6)

where (D.2) and (D.3) can be used to eliminate Byp and Bj3-

Relations (D.1) to (D.6) can be also found in Love [19], Chaprer XXI, where a

different notation is followed and all results are derived for 1nextensible

rods (i.e. e =0, p,+Qrr -Q,q = 0 instead of equation (D.1)).
Relations (V.4) to (V.6) give:
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@ af) +-eh @l +addd)+ anpie=o (3.7

Q= tah, + - @l - wo B, (D.8)
£ 4

Q% - _(endps + (P - €P) (gg s‘% + 02 Qi) + M7 B4 (p.9)

where relations (D.2) to (D.6) can be used to eliminate and 812, 813, ﬂi,
Qf, and Qgi We ‘may now substitute eéuafions (p.1) to (D.6), (D.8) and
(D.9) in (V.1) to (V.3) and obtain three linear differemtial equations in
terms of p, q, r and 8. These three equations together with (D.7) are the
full governing equations in terms of p, q, Tr and § only.

The boundary conditions (85) become
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e e =g = 14 SN S, g5 p = =
p=q=r=8=gq_+ a Qr=r_+ 2 9 @p=0 at s =0, 1 (D.10)

D.2 ORTHOGONALITY CONDITIONS
Observing the form of equations (V.1) to (V.3) and (D.7), all expressed in
terms of p, g, r and B only, and following the arguments given in Section B.2,

the orthogonality condition for the genmeral case can be written as:

¢ +00r oz, + 1;2 By 8,1 ds = 0 for I, # I (D.11)

1.,z 3
Jo 7Py By ¥ 70,y 1”3

Equation (D.11) reduces to (B.19) and (C.17) when p and q are independent of r

and B, 1.e. when the static configuration is planar and Qg = 0.



